AIM-9L Sidewinder

From War Thunder Wiki
Jump to: navigation, search

Description

The AIM-9L Sidewinder missile (scale is approximate)


The AIM-9L Sidewinder is an American infrared homing air-to-air missile, it was introduced in Update 1.85 "Supersonic".

The AIM-9L entered service in 1977 as the first Sidewinder with all-aspect capabilities. It was first used by a pair of F-14 Tomcats in 1981, successfully destroying two Libyan Su-22s. Its first large scale usage was by the United Kingdom during the Falklands War, with an 80% launch-to-kill ratio.

Vehicles equipped with this weapon

General info

  • Mass: 84 kg
  • Guidance: IR
  • Aspects: All-Aspects
  • Weapon Lock range in rear-aspect: 6.50 km
  • Weapon Lock range in all-aspect: 3.00 km
  • Launch range: 18.00 km
  • Maximum speed: Mach 2.5
  • Maximum overload: 30 G
  • Explosive type: HBX
  • Explosive mass: 3.54 kg
  • TNT equivalent: 5.66 kg

Effective damage

Describe the type of damage produced by this type of missile (high explosive, splash damage, etc)

Comparison with analogues

Give a comparative description of missiles that have firepower equal to this weapon.

Usage in battles

The AIM-9L is best used in rear-aspect within a 3 km range from the target. It is best used against targets who are unaware, do not have flares, or have low energy.

Pros and cons

Pros:

  • Can pull hard with a 30G Max G-overload
  • Up to 5 km in which the missile can turn (5.2 s of burn time)
  • Retains the long range of the AIM-9D/G
  • Occasionally completely ignores flares

Cons:

  • Still fairly vulnerable to flares, especially when launched head-on
  • Low track rate means it can be defeated by moderate manoeuvres

History

Development

The experience with the AIM-9 Sidewinders in the Vietnam War and Yom Kippur War showed that there were still many improvements that could be made to the Sidewinder's performance. Low-altitude performance was poor due to environmental interferences on the Sidewinder's IR seeker, and the IR seeker was only able to attack from the rear to lock onto the engine exhaust of an enemy aircraft. Improving the Sidewinder's seeker capabilities to solve these issues became the key improvement for the next Sidewinder generation.[1]

An AIM-9L missile on display. The canard fin shape is the most distinctive external feature of the AIM-9L.

The United States Navy had their own development team within China Lake that set to work improving their Sidewinders, which has so far culminated from the AIM-9B to the AIM-9D, AIM-9G and their latest AIM-9H. The US Air Force had their own development of the Sidewinder splitting off from the US Navy's AIM-9B to the AIM-9E and AIM-9J. The US Navy and US Air Force's Sidewinder models were not compatible between the two service branches due to differences in seeker cooling methods. The United States Air Force desired to continue their own missile program named "CLAW", which called for the use of smaller, cheaper missiles so more could be fired at a time. William Perry, the Defense Department's deputy director of research and engineering, disapproved of this path and told the US Air Force to work with the US Navy to work together on a common IR missile for both service branches. The US Air Force, therefore, cooperated with the US Navy's China Lake team to share specifications and technology to produce the next missile. The US Navy would designate this program as the AIM-9H Product Improvement Package (PIP).[2]

The package prioritized improving the seeker with an indium antimonide seeker, which could detect the longer-wavelength infrared radiation given out of warm surfaces of aircraft parts, allowing the missile to obtain all-aspect capability (ALASCA) in acquiring targets.[2] Other improvements with the AIM-9H PIP were the long-span pointed double-delta canards, a new MK 36 solid-fuel rocket motor, WDU-17/B warhead featuring double-layer continuous-rod scheme, and a DSU-15/B Active Optical Target Detector (AOTD) laser proximity fuse system [3][4] The cooling system was improved to a TMU/72/B argon-gas cooling system that was contained within the missile's seeker, which allowed for use on both USAF and USN missile launchers.[1] The one feature that complicated the US Navy and US Air Force cooperation with the missile was the reticle seeker, with the US Navy desiring an amplitude-modulated (AM) seeker while the US Air Force desired a frequency-modulated (FM) seeker. An AM-FM system was developed by Raytheon,[2], which allowed the Sidewinder to use both traditional AM reticle that is effective in cloudy backgrounds with the benefit of the FM reticle reducing seeker error signal inputs from the target's increasing size as the seeker gets closer.[1][5]

An exploded diagram of the AIM-9L and its components.

Another improvement Raytheon introduced in the AIM-9H PIP was a rate bias that caused the missile to aim slightly ahead of an aircraft's hot afterburner. Issues arose when the missiles' rate bias adjusts too far ahead and missed the aircraft from the front. Consultation with General Dynamics revealed similar issues had arose during the development of the FIM-92 Stinger missile, and the proper adjustments were made to solve the issue.[2] Sometime prior to 1975, the AIM-9H PIP would be designated as the AIM-9L. By 1975, the AIM-9L was tested in a joint navy-air force evaluation. Satisfied with the results, the AIM-9L missile was put into production in 1976 with both Raytheon and Ford Aerospace for a missile that was now jointly serving the United States Air Force and Navy.[6]

Foreign users were also sought out for the AIM-9L. In one case, the AIM-9L was contested against the German company Bodensee Geratechnik (BGT), which had developed an ALASCA seeker for a proposed Viper missile. To resolve this and bring BGT to help produce AIM-9Ls to European allies, the US Navy and Raytheon waived license and R&D fees for the AIM-9L, causing the end of the Viper missile development and provided AIM-9Ls to Great Britain, Norway, and Germany. Japan were also given the license to produce AIM-9Ls, which was performed by Mitsubishi. Between Raytheon, Ford, BGT, and Mitsubishi, more than 16,000 AIM-9L Sidewinders have been built since their production started.[4]

Combat

The AIM-9L would see action in separate theaters by different users in the 1980s.

A F-14A equipped with a complement of AIM-9L Sidewinders and AIM-7 Sparrows.

On 19 August 1981, two US Navy's F-14A Tomcats from VF-41 were engaged by two Libyan Su-22 in an event that would be known as the Gulf of Sidra incident.[7][8] As the Su-22s closed in, the lead plane fired a AA-2 "Atoll missile at the F-14s, but missed.[9] After evading the missile, the the F-14s maneuvered behind the Su-22s and, equipped with AIM-9L Sidewinders, each destroyed a Su-22 with the Sidewinders. The combat was concluded within 45 seconds.[8]

In 1982, the British would extensively use AIM-9L during the Falkland War on Sea Harriers. Procuring and using the AIM-9L were difficult as when the British carrier task force set sail to the Falklands in 05 April 1982, only 19 AIM-9L were in inventory. Moreover, the new canards on the AIM-9L did not fit the Sea Harrier's launch rails below the wings, though this was solved by filing down the launch rails for the AIM-9L to fit.[10] Sea Harriers equipped with AIM-9L fought in engagements against Argentine A-4 Skyhawks, Super Etendards, and Mirage IIIs.[11] By the end of the conflict, a total of 27 AIM-9Ls were launched which scored 24 hits on Argentine aircraft, which translates to an 88% success rate for the AIM-9L missile.[12]

Another conflict in 1982 that saw AIM-9Ls being used was the Israeli-Lebanon war. The Israelis launched Operation Mole Cricket 19 on 09 June 1982 to eliminate a Syrian air defense network set up in Lebanon's Bekaa Valley. The success of the Israeli operation forced the Syrians to commit their MiG-21s and MiG-23s to prevent the Israeli Air Force (IAF) from achieving aerial superiority. The IAF, consisting of F-15 and F-16 fighter jets, retained control of the sky as Airborne Warning And Control System (AWACS) aircraft informed Israeli pilots of the presence of Syrian jets, which were then intercepted and destroyed at visual range with AIM-9Ls, Shafrir, or Python missiles. The AIM-9L reportedly earned a kill rate of 85% during this conflict and contributed to the Israeli claim of destroying more than 80 Syrian aircraft, which only had K-13 missiles to fight back against the IAF aircraft.[11][12]

Future Sidewinder variants

An AH-1W SuperCobra fires a AIM-9L from a wing-mounted missile launcher at China Lake.

Though AIM-9L was a successful Sidewinder variant, there were still more features and improvements to be introduced into the model. Infrared Counter-Countermeasure (IRCCM) capability, a smaller smoke signature from the motor, and an improved WGU-4/B guidance system were implemented into the AIM-9L PIP that became the AIM-9M, which saw use during the Gulf War.[4] The next significant AIM-9 variant to be developed was the AIM-9R, which attempted to evolve the AIM-9 design with the use of a charge-coupled device (CCD) detector, allowing the missile to use an imaging system to track the target. However, cost overruns, staff mismanagement, use of expensive and complicated components, and the fact the imaging system could not work in the night caused the backers of the program to lose faith and the missile was cancelled by the US Navy in December 1991.[13]

The AIM-9L and future variants introduced many radical features that the United States deemed too sensitive for all allies, and export variants were produced that lacked some of the newer features. These export variants were labeled as AIM-9N, AIM-9P, and AIM-9S.[4]

An AIM-9X Sidewinder on an F-15C.

The most recent Sidewinder variant to see use is the AIM-9X, which uses the Mk 36 motor and WDU-17/B warhead from the AIM-9M, but the air frame had been redesigned with smaller fins and canards for lower drag and better flight performance. Rollerons have been removed from the Sidewinder's design as the flight control system was sophisticated enough to no longer need them. The WPU-17/B propulsion section uses a jet-vane steering system to steer the Sidewinder with thrust-vectoring. The result was a more compact missile that could fit within a fighter's internal bay, such as the F-22 and F-35.[4] The biggest improvement of the AIM-9X over the predecessors was the guidance, using a seeker that was developed for the AIM-132 ASRAAM with an imaging infrared array, cooled by a Stirling-cycle cryocooler.[3] The AIM-9X also introduced an "Off-Boresight" capability, allowing the missile to be used with the Joint Helmet-Mounted Cueing System (JHMCS) to acquire target with the pilot's helmet.[3][4] Continually seeing development as late as 2019,[14] the AIM-9X looks to be the main Sidewinder model for the 21st century aerospace.

Media

An AIM-9L Sidwinder hangs off a F-14 Tomcat.
Videos

See also

External links

References

Citations
  1. 1.0 1.1 1.2 Kopp 2014
  2. 2.0 2.1 2.2 2.3 Westrum 2013, 191-193
  3. 3.0 3.1 3.2 Goebel 2021
  4. 4.0 4.1 4.2 4.3 4.4 4.5 Parsch 2008
  5. Westrum 2013, 137
  6. Westrum 2013, 196
  7. Guardia 2019, 20
  8. 8.0 8.1 Westrum 2013, 1-2
  9. Guardia 2019, 30-35
  10. White 2020
  11. 11.0 11.1 Young 2021
  12. 12.0 12.1 Herbert 2007
  13. Westrum 2013, 198-203
  14. Rogoway et al. 2019
Bibliography
  • Goebel, Greg. 2021. "The Falcon & Sidewinder Air-To-Air Missiles." Air Vectors. Last modified July 01, 2021. Website (Archive).
  • Guardia, Mike. 2019. Tomcat Fury: A Combat History of the F-14. Maple Grove, MN: Magnum Books.
  • Herbert, Adam J. 2007. "The Wars of Eighty-Two". Air Force Magazine. Last modified April 01, 2007. Website (Archive).
  • Kopp, Carlo. 2014. "The Sidewinder Story: The Evolution of the AIM-9 Missile." Air Power Australia. Last modified January 27, 2014. Website (Archive)
  • Parsch, Andreas. 2008. "AIM-9." Directory of U.S. Military Rockets and Missiles. Last modified July 09, 2008. Website (Archive)
  • Rogoway, Tyler and Josephy Trevithick. 2019. "The AIM-9X Sidewinder May Finally Evolve Into A Completely New And Longer-Range Missile". The Drive. Last modified September 03, 2019. Website (Archive).
  • Westrum, Ron. 2013. Sidewinder; Creative Missile Development at China Lake. Annapolis, MD: Naval Institute Press.
  • White, Roland. 2020. "Her Majesty's Death Ray: How The AIM-9L Sidewinder Vanquished The Argentine Air Force." The Drive. Last modified October 07, 2020. Website. (Archive)
  • Young, James. 2021. "Freedom's "Flying Snake": The AIM-9 Sidewinder in the Cold War". Marine Corps University. Accessed January 07, 2022. Website (Archive).


Missiles
USA 
AAM  AIM-7C Sparrow · AIM-7D Sparrow · AIM-7E Sparrow · AIM-7E-2 Sparrow · AIM-7F Sparrow
  AIM-9B Sidewinder · AIM-9C Sidewinder · AIM-9D Sidewinder · AIM-9E Sidewinder · AIM-9G Sidewinder · AIM-9J Sidewinder · AIM-9L Sidewinder · AIM-9P Sidewinder
  ATAS (AIM-92)
AGM  AGM-12B Bullpup · AGM-12C Bullpup · AGM-22 · AGM-65A · AGM-65B · AGM-65D · AGM-114B Hellfire · AGM-114K Hellfire II · BGM-71D TOW-2
ATGM  BGM-71 TOW · BGM-71A TOW · BGM-71B TOW · BGM-71C I-TOW
SAM  FIM-92 Stinger · MIM146
Germany 
AAM  AIM-9B FGW.2 Sidewinder · R-60MK
AGM  HOT-1 · HOT-2 TOW · HOT-3 · PARS 3 LR
ATGM  HOT-K3S
SAM  Roland
USSR 
AAM  9M39 Igla · R-3R · R-3S · R-13M · R-13M1 · R-23R · R-23T · R-24R · R-24T · R-60 · R-60M
AGM  9K127 Vikhr · 9M17M Falanga · 9M17P Falanga-PV · 9M120 Ataka · 9M120-1 Ataka
  Kh-23M · Kh-25 · Kh-25ML · Kh-29L · Kh-29T · Kh-66 · S-25L
ATGM  3M7 · 9M14 · 9M113 Konkurs · 9M114 Shturm · 9M123 Khrizantema · 9M133
SAM  9M311 · 9M311-1M
Britain 
AAM  Fireflash · Firestreak · Red Top · Skyflash · SRAAM
ATGM  BAe Swingfire · MILAN · MILAN 2 · ZT3
SAM  Starstreak
Japan 
ATGM  Type 64 MAT · Type 79 Jyu-MAT
SAM  Type 91
China 
AAM  PL-2 · PL-5B
ATGM  HJ-73 · HJ-73E
SAM  HN-6
Italy 
AAM  Aspide-1A
SAM  Mistral SATCP
France 
AAM  AA-20 Nord · Matra R530 · Matra R530E · Matra Super 530F · Matra R550 Magic 1 · Matra R550 Magic 2 · Mistral
AGM  9M14-2 Malyutka-2 · AS-20 Nord · AS-30 Nord · AS-30L Nord · HOT-1 · HOT-2 TOW · HOT-3
ATGM  HOT · SS.11
SAM  Roland · VT1
Sweden 
AAM  RB24 · RB24J · RB71 · RB 74
AGM  Rb05A · RB 53 Bantam · RB 55B Heli TOW · RB 55C Heli TOW · RB 75
ATGM  Rbs 55 · Rbs 56
SAM  Rbs 70
Israel 
AAM  Shafrir · Shafrir 2
  AAM = Air-to-Air Missile   AGM = Air-to-Ground Missile   ATGM = Anti-Tank Guided Missile (Ground mounts)   SAM = Surface-to-Air Missile