Difference between revisions of "Python 3"

From War Thunder Wiki
Jump to: navigation, search
(Adding general info (from PL-8 due to their sameness) and updated usage and history)
(Edits)
Line 17: Line 17:
  
 
=== Effective damage ===
 
=== Effective damage ===
Python 3 with 5 kg of HBX filler has around 8 kg TNTe will produce both explosion and shrapnel damage to enemy aircrafts, penetrating airframes or blowing off parts off the aircraft.
+
<!-- ''Describe the type of damage produced by this type of missile (high explosive, splash damage, etc)'' -->
 +
The Python 3 with 5 kg of HBX filler has around 8 kg TNTe. It will produce both explosion and shrapnel damage to enemy aircraft, penetrating airframes or blowing off parts off the aircraft.
  
 
=== Comparison with analogues ===
 
=== Comparison with analogues ===
[[AIM-9L Sidewinder|AIM-9L]] - US/NATO standard IR AAM with very long guidance time; while having lesser overload, head-on range and explosive content.
+
<!-- ''Give a comparative description of missiles that have firepower equal to this weapon.'' -->
 
+
* [[AIM-9L Sidewinder|AIM-9L]] - US/NATO standard IR AAM with very long guidance time; while having lesser overload, head-on range and explosive content.
[[R-73]] - Soviet IR AAM with identical overload; while having lesser explosive content and shorter combat radius.
+
* [[R-73]] - Soviet IR AAM with identical overload; while having lesser explosive content and a shorter combat radius.
 
+
* [[Matra R550 Magic 2|Magic-2]] - French standard IR AAM with higher explosive content, slightly more guidance time and a faster flight speed; while having slightly less overload but identical head-on range.
[[Matra R550 Magic 2|Magic-2]] - French standard IR AAM with higher explosive content, slight more guidance time and flies faster; while having slightly less overload but identical head-on range.
 
  
 
== Usage in battles ==
 
== Usage in battles ==
As one of the most advanced IR AAM of its era, Python excels at its velocity, overload and damage. The overall combat radius is also long enough for strikes even at 3 km and above, there are cases that Python 3 could hit enemy targets at higher altitude and long distance (thanks to lesser air density and its powerful rocket engine); the speed and damage of the missile at Mach 3.5 also helps it deliver fatal blow to careless enemies or sitting ducks which depleted their energy for an evade. Although carriers of Python 3 currently lacks HMD unlike its Chinese cousin, up to 6 Python 3 on F-16A Netz can still be an ultimate nightmare to enemy jets; just be sure not to fire them within 1.2 km radius when head-on as these missiles doesn't have thrust vectoring for very tight maneuvers, wasting a chance to take down enemies.
+
<!-- ''Describe situations when you would utilise this missile in-game (vehicle, pillbox, base, etc)'' -->
 +
As one of the most advanced IR AAM of its era, the Python 3 excels in terms of velocity, overload factor, and damage. The overall combat radius is also long enough for strikes even at 3 km and above, there are cases where the Python 3 could hit enemy targets at a higher altitude and long distance (thanks to lesser air density and its powerful rocket engine). The speed and damage of the missile at Mach 3.5 also helps it deliver fatal blow to careless enemies or sitting ducks which depleted their energy for an evasive manoeuvre. Although carriers of the Python 3 currently lack HMD unlike its Chinese cousin, up to 6 x Python 3 on F-16A Netz can still be an ultimate nightmare for enemy jets. Be sure not to fire them within 1.2 km radius when in a head-on as these missiles doesn't have thrust vectoring for very tight manoeuvres, wasting a chance to take down enemies.
  
 
=== Pros and cons ===
 
=== Pros and cons ===
Line 37: Line 38:
 
* High velocity on par with Soviet SARH-based missiles at Mach 3.5
 
* High velocity on par with Soviet SARH-based missiles at Mach 3.5
 
* Long combat radius  
 
* Long combat radius  
* Loaded with high explosive contents for sure kills
+
* Loaded high explosive payload
  
 
'''Cons:'''
 
'''Cons:'''
Line 45: Line 46:
  
 
== History ==
 
== History ==
As the production of Israeli domestic AAM has gone smoothly after the production of Shafrir-1/2 by 1970s, they have been proved very effective against enemy jets, especially when IAF shot down 89 jets with the Shafrir-2. However, the ongoing conflicts with surrounding Arabic countries and introduction of more advanced jets for these countries also called for a new IR AAM that can achieve head-on attacks - USAF by the time already has AIM-9L in 1977 while Soviet was still working on the R-60M variant (introduced in 1982). The development on Python 3 started in 1978 where Rafael ditched Hebrew names for the missile family and opted for an English name instead; as soon as Israel started to be involved in the Lebanese War in 1982, IAF launched the Operation Mole Cricket 19 where the IAF achieved no losses against around 82 (up to 86 vary by sources) Lebanese/Syrian jets and destroying their SAM systems for further air superiority. During the "Bekaa Valley Turkey Shoot", IAF also introduced their head-on IR AAMs including US-built AIM-9L and their latest Python 3 in operation, where the latter scored around 50 victories among the 82 victories. Although being a missile from 1982, Python 3 is now still used by IAF alongside with its more advanced cousins, Python 4 and 5.<ref>https://www.thedrive.com/the-war-zone/39648/israeli-f-15s-were-armed-with-old-missiles-during-b-52-escort</ref>
+
<!-- ''Examine the history of the creation and combat usage of the weapon in more detail than in the introduction. If the historical reference turns out to be too long, take it to a separate article, taking a link to the article about the weapon and adding a block "/History" (example: <nowiki>https://wiki.warthunder.com/(Weapon-name)/History</nowiki>) and add a link to it here using the <code>main</code> template. Be sure to reference text and sources by using <code><nowiki><ref></ref></nowiki></code>, as well as adding them at the end of the article with <code><nowiki><references /></nowiki></code>.'' -->
 +
As the production of Israeli domestic AAM has gone smoothly after the production of Shafrir-1/2 in the 1970s, they have been proved very effective against enemy jets, especially when IAF shot down 89 jets with the Shafrir-2. However, the ongoing conflicts with surrounding Arabic countries and introduction of more advanced jets for these countries also called for a new IR AAM that can achieve head-on attacks - USAF by the time already has AIM-9L in 1977 while Soviet was still working on the R-60M variant (introduced in 1982). The development of the Python 3 started in 1978 where Rafael ditched Hebrew names for the missile family and opted for an English name instead. As soon as Israel started to be involved in the Lebanese War in 1982, the IAF launched the Operation Mole Cricket 19 where it achieved no losses against around 82 (up to 86 vary by sources) Lebanese/Syrian jets and destroying their SAM systems for further air superiority. During the "Bekaa Valley Turkey Shoot", the IAF also introduced their head-on IR AAMs including US-built AIM-9Ls and their latest Python 3 in operation, where the latter scored around 50 victories among the 82 victories. Although being a missile from 1982, the Python 3 is now still used by IAF alongside with its more advanced cousins, Python 4 and 5.<ref>https://www.thedrive.com/the-war-zone/39648/israeli-f-15s-were-armed-with-old-missiles-during-b-52-escort</ref>
  
Soon after the "Turkey Shot", Chinese military officials and engineers also deemed Python 3 as a good bargain to upgrade PLAAF fleet with more advanced western missiles before domestic alternatives commissioned; the deal which included the production line and 1500 missiles was set in 1983 under the name Project No.8 (八号工程), later renamed PL-8 as the project finalized and new missile entered service in 1986; the technologies used on Python 3 also set the foundation of future Chinese domestic missiles i.e. export-only PL-9 which cooperated with the seeker from PL-8.
+
Soon after the "Turkey Shoot", Chinese military officials and engineers also deemed Python 3 as a good bargain to upgrade the PLAAF fleet with more advanced Western missiles before domestic alternatives were commissioned. The deal which included the production line and 1,500 missiles was set in 1983 under the name Project No.8 (八号工程), later renamed PL-8 as the project was finalized and the new missile entered service in 1986. The technologies used on Python 3 also set the foundation of future Chinese domestic missiles i.e. export-only PL-9 whose seeker was developed from the PL-8.
  
 
== Media ==
 
== Media ==
Line 54: Line 56:
 
== See also ==
 
== See also ==
 
''Links to the articles on the War Thunder Wiki that you think will be useful for the reader, for example:''
 
''Links to the articles on the War Thunder Wiki that you think will be useful for the reader, for example:''
 
 
* ''reference to the article about the variant of the weapon;''
 
* ''reference to the article about the variant of the weapon;''
 
* ''references to approximate analogues by other nations and research trees.''
 
* ''references to approximate analogues by other nations and research trees.''
Line 60: Line 61:
 
== External links ==
 
== External links ==
 
''Paste links to sources and external resources, such as:''
 
''Paste links to sources and external resources, such as:''
 
 
* ''topic on the official game forum;''
 
* ''topic on the official game forum;''
 
* ''other literature.''
 
* ''other literature.''

Revision as of 15:24, 1 September 2023

Description

The Python 3 is an Israeli heatseeking missile, being a further development of the Shafrir 2. Produced by Rafael Advanced Defense Systems, it was much improved and has seen widespread service. Notably in the 1982 Lebanon war, it performed very well, gaining between 35-50 kills to its name. The PLAAF was also enthused with it, liscensing it as the PL-8.

The Python 3 was introduced in Update "La Royale", and comfortably sits as one of, if not the best short range IR missile. Compared to the AIM-9L and R-60M, it is faster and at 40Gs, pulls much harder than both. It has better range than the R-60M, and in most cases the AIM-9L, although in theory at high altitude the AIM-9L will outrange it. It works well being shot at strange angles that enemies will not expect, to avoid being flared away.

Vehicles equipped with this weapon

General info

Tell us about the tactical and technical characteristics of the missile.

Effective damage

The Python 3 with 5 kg of HBX filler has around 8 kg TNTe. It will produce both explosion and shrapnel damage to enemy aircraft, penetrating airframes or blowing off parts off the aircraft.

Comparison with analogues

  • AIM-9L - US/NATO standard IR AAM with very long guidance time; while having lesser overload, head-on range and explosive content.
  • R-73 - Soviet IR AAM with identical overload; while having lesser explosive content and a shorter combat radius.
  • Magic-2 - French standard IR AAM with higher explosive content, slightly more guidance time and a faster flight speed; while having slightly less overload but identical head-on range.

Usage in battles

As one of the most advanced IR AAM of its era, the Python 3 excels in terms of velocity, overload factor, and damage. The overall combat radius is also long enough for strikes even at 3 km and above, there are cases where the Python 3 could hit enemy targets at a higher altitude and long distance (thanks to lesser air density and its powerful rocket engine). The speed and damage of the missile at Mach 3.5 also helps it deliver fatal blow to careless enemies or sitting ducks which depleted their energy for an evasive manoeuvre. Although carriers of the Python 3 currently lack HMD unlike its Chinese cousin, up to 6 x Python 3 on F-16A Netz can still be an ultimate nightmare for enemy jets. Be sure not to fire them within 1.2 km radius when in a head-on as these missiles doesn't have thrust vectoring for very tight manoeuvres, wasting a chance to take down enemies.

Pros and cons

Pros:

  • High overload factor of 40G
  • High velocity on par with Soviet SARH-based missiles at Mach 3.5
  • Long combat radius
  • Loaded high explosive payload

Cons:

  • Vulnerable to flares
  • Heavier than its NATO/Warsaw Pact counterparts

History

As the production of Israeli domestic AAM has gone smoothly after the production of Shafrir-1/2 in the 1970s, they have been proved very effective against enemy jets, especially when IAF shot down 89 jets with the Shafrir-2. However, the ongoing conflicts with surrounding Arabic countries and introduction of more advanced jets for these countries also called for a new IR AAM that can achieve head-on attacks - USAF by the time already has AIM-9L in 1977 while Soviet was still working on the R-60M variant (introduced in 1982). The development of the Python 3 started in 1978 where Rafael ditched Hebrew names for the missile family and opted for an English name instead. As soon as Israel started to be involved in the Lebanese War in 1982, the IAF launched the Operation Mole Cricket 19 where it achieved no losses against around 82 (up to 86 vary by sources) Lebanese/Syrian jets and destroying their SAM systems for further air superiority. During the "Bekaa Valley Turkey Shoot", the IAF also introduced their head-on IR AAMs including US-built AIM-9Ls and their latest Python 3 in operation, where the latter scored around 50 victories among the 82 victories. Although being a missile from 1982, the Python 3 is now still used by IAF alongside with its more advanced cousins, Python 4 and 5.[1]

Soon after the "Turkey Shoot", Chinese military officials and engineers also deemed Python 3 as a good bargain to upgrade the PLAAF fleet with more advanced Western missiles before domestic alternatives were commissioned. The deal which included the production line and 1,500 missiles was set in 1983 under the name Project No.8 (八号工程), later renamed PL-8 as the project was finalized and the new missile entered service in 1986. The technologies used on Python 3 also set the foundation of future Chinese domestic missiles i.e. export-only PL-9 whose seeker was developed from the PL-8.

Media

Excellent additions to the article would be video guides, screenshots from the game, and photos.

See also

Links to the articles on the War Thunder Wiki that you think will be useful for the reader, for example:

  • reference to the article about the variant of the weapon;
  • references to approximate analogues by other nations and research trees.

External links

Paste links to sources and external resources, such as:

  • topic on the official game forum;
  • other literature.


Missiles
USA 
AAM  AIM-54A Phoenix · AIM-54C Phoenix · ATAS (AIM-92) · AIM-120A · AIM-120B · Fakour-90 · Sedjeel
Sparrow  AIM-7C · AIM-7D · AIM-7E · AIM-7E-2 · AIM-7F · AIM-7M
Sidewinder  AIM-9B · AIM-9C · AIM-9D · AIM-9E · AIM-9G · AIM-9H · AIM-9J · AIM-9L · AIM-9M · AIM-9P
AGM  AGM-22 · APKWS II (M151) · APKWS II (M282) · BGM-71D TOW-2
Bullpup  AGM-12B Bullpup · AGM-12C Bullpup
Hellfire  AGM-114B Hellfire · AGM-114K Hellfire II
Maverick  AGM-65A · AGM-65B · AGM-65D · AGM-65E2 · AGM-65G · AGM-65L
ATGM  LOSAT/MGM-166A
TOW  BGM-71 · BGM-71A · BGM-71B · BGM-71C
SAM  FIM-92 Stinger · MIM-72 · MIM146
Naval SAM  RIM-24A
Germany 
AAM  AIM-9B FGW.2 Sidewinder · AIM-9L/I Sidewinder · Flz Lwf 63 · Flz Lwf 63/80
AGM  9M14M Malyutka · Flz Lwf LB 82 · HOT-1 · HOT-2 TOW · HOT-3 · PARS 3 LR
AShM  AS.34 Kormoran
ATGM  HOT-K3S · Spike-LR II
SAM  Roland
Naval SAM  Strela-2M
USSR 
AAM  9M39 Igla · R-3R · R-3S · R-13M1 · R-23R · R-23T · R-24R · R-24T · R-27ER(1) · R-27ET(1) · R-27R(1) · R-27T(1) · R-60 · R-60M · R-60MK · R-73(E) · R-77
AGM  9K127 Vikhr · 9M17M Falanga · 9M120 Ataka · 9M120-1 Ataka
  Kh-23M · Kh-25 · Kh-25ML · Kh-29L · Kh-29T · Kh-29TE · Kh-29TD · Kh-66 · S-25L · S-25LD
ATGM  3M7 · 9M14 · 9M113 Konkurs · 9M114 Shturm · 9M123 Khrizantema · 9M133 · 9M133FM3 · 9M133M-2
SAM  95Ya6 · 9M311 · 9M311-1M · 9M331 · 9M37M
Naval SAM  Volna-M
Britain 
AAM  Fireflash · Firestreak · Red Top · Skyflash · Skyflash SuperTEMP · SRAAM · R-Darter
AGM  AGM-65E · AS.12 · ZT-6 Mokopa
AShM  AJ.168
ATGM  BAe Swingfire · MILAN · MILAN 2 · ZT3
SAM  Starstreak
Japan 
AAM  AAM-3 · AAM-4
AGM  Ki-148 I-Go Model 1B
ATGM  Type 64 MAT · Type 79 Jyu-MAT
SAM  Type 81 SAM-1C · Type 91
China 
AAM  PL-2 · PL-5B · PL-5C · PL-5EII · PL-7 · PL-8 · PL-12 · SD-10(A) · TY-90
AGM  AKD-9 · AKD-10 · Fire Snake 90A · HJ-8A · HJ-8C · HJ-8E · HJ-8H
ATGM  302 · HJ-73 · HJ-73E · HJ-9 · QN201DD · QN502CDD
SAM  HN-6
Italy 
AAM  Aspide-1A · MAA-1 Piranha
AGM  AGM-65H · CIRIT · L-UMTAS · Spike ER
ATGM  Spike-LR II
Naval AShM  Nettuno
SAM  Mistral SATCP
France 
AAM  AA-20 Nord · Matra R511 · Matra R530 · Matra R530E · Matra Super 530D · Matra Super 530F · Matra R550 Magic 1 · Matra R550 Magic 2 · Mistral · MICA-EM
AGM  9M14-2 Malyutka-2 · AS-20 Nord · AS-30 Nord · AS-30L Nord · HOT-1 · HOT-2 TOW · HOT-3 · Spike ER
ATGM  HOT · SS.11
SAM  Roland · VT1
Sweden 
AAM  RB24 · RB24J · RB71 · RB 74 · RB 74(M) · RB 99
AGM  Rb05A · RB 53 Bantam · RB 55B Heli TOW · RB 55C Heli TOW · RB 75 · RB 75T
ATGM  Rbs 55 · Rbs 56
SAM  Rbs 70
Israel 
AAM  Shafrir · Shafrir 2 · Python 3 · Derby
ATGM  Spike-LR II
  AAM = Air-to-Air Missile   AGM = Air-to-Ground Missile   AShM = Anti-Ship Missile   ATGM = Anti-Tank Guided Missile (Ground mounts)   SAM = Surface-to-Air Missile