Difference between revisions of "AN-M65A1 Fin M129 (1,000 lb)"

From War Thunder Wiki
Jump to: navigation, search
(Added a description of the weapon and comparisons)
(Edits)
Line 1: Line 1:
 
== Description ==
 
== Description ==
''The AN-M65A1 Fin M129 1,000 lb bomb is an aerial bomb developed for the United States Army Air Corps and United States Navy in 1939, just prior to WWII. It is a General Purpose bomb that is employed agaisnt pretty much any target that may be encountered, and, due to its weight, has a powerful blast, and is very effective agaisnt vehicles, infrastructure and ships. It was designed to have a somewhat thin shell and pack the highest possible ammount of explosives (in this case, Amatol), and was used chiefly by heavy bombers such as the B-17 Flying Fortress and the B-24 Liberator, although smaller aircraft such as the P-47 Thunderbolt, P-51 Mustang and F4U Corsair could use it (but didnt as often).''
+
<!-- ''Write an introduction to the article in 2-3 small paragraphs. Briefly tell us about the history of the development and combat using the weaponry and also about its features. Compile a list of air, ground, or naval vehicles that feature this weapon system in the game.'' -->
 +
The AN-M65A1 Fin M129 1,000 lb bomb is an aerial bomb developed for the United States Army Air Corps and United States Navy in 1939, just prior to WWII. It is a General Purpose bomb that is employed against pretty much any target that may be encountered, and, due to its weight, has a powerful blast, and is very effective against vehicles, infrastructure and ships. It was designed to have a somewhat thin shell and pack the highest possible amount of explosives (in this case, Amatol), and was used chiefly by heavy bombers such as the B-17 Flying Fortress and the B-24 Liberator, although smaller aircraft such as the P-47 Thunderbolt, P-51 Mustang and F4U Corsair could use it (but didn't as often).
  
After the war this bomb was more widely used, being commonly fitted to ground attack aircraft and was favoured by the US Navy, which used them extensively in the Korean War in the F9F Panther and AD-4 Skyraider. As it was being used by smaller aircraft that carried it externally instead instead of packing them into an internal bomb bay, measures were taken to reduce their drag, and so the M129 Fin was developed and fitted to this weapon.  
+
After the war this bomb was more widely used, being commonly fitted to ground attack aircraft and was favoured by the US Navy, which used them extensively in the Korean War in the F9F Panther and AD-4 Skyraider. As it was being used by smaller aircraft that carried it externally instead instead of packing them into an internal bomb bay, measures were taken to reduce their drag, and so the M129 Fin was developed and fitted to this weapon.
  
 
This bomb is also notable for being involved in the 1967 USS Forrestal fire, in which one of these bombs was detonated in the deck of the USS Forrestal by flaming jet fuel, killing dozens of sailors and wounding many more (the whole incident would have a death toll of 134 sailors killed and 161 wounded).
 
This bomb is also notable for being involved in the 1967 USS Forrestal fire, in which one of these bombs was detonated in the deck of the USS Forrestal by flaming jet fuel, killing dozens of sailors and wounding many more (the whole incident would have a death toll of 134 sailors killed and 161 wounded).
Line 26: Line 27:
  
 
== General info ==
 
== General info ==
''This bomb weighs 1,000 pounds, roughly 454 kg. This is a bomb of considerable size, and as such, is also quite powerful. Approximately half of this weight is comprised by the Amatol filling (530 lb or 240,4 kg), making this a very capable bomb, and can be very effective agaisnt pretty much any target.''
+
<!-- ''Tell us about the tactical and technical characteristics of the bomb.'' -->
 +
This bomb weighs 1,000 pounds, roughly 454 kg. This is a bomb of considerable size, and as such, is also quite powerful. Approximately half of this weight is comprised by the Amatol filling (240.4 kg or 530 lb), making this a very capable bomb, and can be very effective against pretty much any target.
  
 
=== Effective damage ===
 
=== Effective damage ===
''Being a General Purpose bomb, this wepaon relies on Blast and Splash damage effects to harm and destroy its targets.''
+
<!-- ''Describe the type of damage produced by this type of bomb (high explosive, splash damage, etc)'' -->
 +
Being a General Purpose bomb, this weapon relies on Blast and Splash damage effects to harm and destroy its targets.
  
 
=== Comparison with analogues ===
 
=== Comparison with analogues ===
Similar weapons would be the German SC500 bomb (which is more powerful), the Soviet FAB-500 bomb (slightly weaker), the British MC 1,000 lb Mark I bomb (considerably more powerful) and the LB GP 1,000 lb bomb (slighly weaker), the Japanese GP 500 kg bombs (both Army and Navy bombs are slightly weaker than the AN-M65A1), the Italian GP 500 kg bomb (slightly weaker) and the French 500 Nº 2 536 kg bomb (which is considerably more powerful).
+
<!-- ''Give a comparative description of bombs that have firepower equal to this weapon.'' -->
 +
Similar weapons would be the German [[SC500K (500 kg)]] bomb (which is more powerful), the Soviet [[FAB-500 (500 kg)]] bomb (slightly weaker), the British [[M.C. 1,000 lb Mk.I (1,000 lb)]] bomb (considerably more powerful) and the [[G.P. 1,000 lb Mk.I (1,000 lb)]] bomb (slightly weaker), the Japanese [[Army Type 92 GPHE (500 kg)]] bomb (both Army and Navy bombs are slightly weaker than the AN-M65A1), the Italian [[GP 500 (500 kg)]] bomb (slightly weaker) and the French [[№.2 (500 kg)]] bomb (which is considerably more powerful).
  
 
== Usage in battles ==
 
== Usage in battles ==
Line 41: Line 45:
  
 
'''Pros:'''
 
'''Pros:'''
 
 
*
 
*
  
 
'''Cons:'''
 
'''Cons:'''
 
 
*
 
*
  
 
== History ==
 
== History ==
<!-- ''Describe the history of the creation and combat usage of the weapon in more detail than in the introduction. If the historical reference turns out to be too long, take it to a separate article, taking a link to the article about the weapon and adding a block "/History" (example: <nowiki>https://wiki.warthunder.com/(Weapon-name)/History</nowiki>) and add a link to it here using the <code>main</code> template. Be sure to reference text and sources by using <code><nowiki><ref></ref></nowiki></code>, as well as adding them at the end of the article with <code><nowiki><references /></nowiki></code>.'' -->
+
<!-- ''Examine the history of the creation and combat usage of the weapon in more detail than in the introduction. If the historical reference turns out to be too long, take it to a separate article, taking a link to the article about the weapon and adding a block "/History" (example: <nowiki>https://wiki.warthunder.com/(Weapon-name)/History</nowiki>) and add a link to it here using the <code>main</code> template. Be sure to reference text and sources by using <code><nowiki><ref></ref></nowiki></code>, as well as adding them at the end of the article with <code><nowiki><references /></nowiki></code>.'' -->
 
Early in aviation history, applications for aircraft to serve in a military capacity surfaced, not only with the intent to scout a battlefield from an aerial vantage point but for the possibility to drop explosive bombs too. Due to the frail nature of the early wood-frame and cloth covered aircraft, lifting capacity resulted in the ability to only carry small bombs.  Effectively these early bombers were hailed as aerial artillery fire which could reach targets hundreds of miles further than the most powerful land-based cannons of the time. Prior to the war, contests abounded where pilots would drop oranges or flour sacks upon predesignated targets to see who could hit closes to the centre.
 
Early in aviation history, applications for aircraft to serve in a military capacity surfaced, not only with the intent to scout a battlefield from an aerial vantage point but for the possibility to drop explosive bombs too. Due to the frail nature of the early wood-frame and cloth covered aircraft, lifting capacity resulted in the ability to only carry small bombs.  Effectively these early bombers were hailed as aerial artillery fire which could reach targets hundreds of miles further than the most powerful land-based cannons of the time. Prior to the war, contests abounded where pilots would drop oranges or flour sacks upon predesignated targets to see who could hit closes to the centre.
  
Line 56: Line 58:
 
For the United States, bomb design did not become a priority until the middle of 1917 when a French official came to the U.S. with several samples of the Gros Andreau bombs which the French were using in large quantities at that time. Immediately these bombs were accepted by the U.S. and used as a standard in developing the first three sizes to be implemented in the military. These three bombs were known as the early “Mark” series, 25 lb Mk.I demolition bomb, 50 lb  Mk.I demolition bomb and the 100 lb Mk.I demolition bomb. By December 1917, only six months later, the military put forth requirements for the development of bombs larger than the existing 100 lb bomb. After two more months of development, production of demolition bombs up to 1,000 lbs was started. Rejected 3-inch artillery rounds were the basis for early 25 lb bombs which were modified into a streamlined shape, very similar to the British Cooper bombs of the time. Larger bombs were manufactured and filled with explosive filler, all of which were placed into a streamlined body, of which a cylindrical shape was the most advantageous.
 
For the United States, bomb design did not become a priority until the middle of 1917 when a French official came to the U.S. with several samples of the Gros Andreau bombs which the French were using in large quantities at that time. Immediately these bombs were accepted by the U.S. and used as a standard in developing the first three sizes to be implemented in the military. These three bombs were known as the early “Mark” series, 25 lb Mk.I demolition bomb, 50 lb  Mk.I demolition bomb and the 100 lb Mk.I demolition bomb. By December 1917, only six months later, the military put forth requirements for the development of bombs larger than the existing 100 lb bomb. After two more months of development, production of demolition bombs up to 1,000 lbs was started. Rejected 3-inch artillery rounds were the basis for early 25 lb bombs which were modified into a streamlined shape, very similar to the British Cooper bombs of the time. Larger bombs were manufactured and filled with explosive filler, all of which were placed into a streamlined body, of which a cylindrical shape was the most advantageous.
  
Early on, the Mark series of bombs proved to be largely unsatisfactory in a number of different areas.  The bomb body itself was weak due to the sheet metal it was made from and the number of welds needed to join the pieces together. The stabilizing fins were made of flimsy metal which tended to distort during both the handling and flight of the bomb, adversely affecting accuracy.  For the field technicians, inserting the fuze was a complicated process which required removing the stabilizing fin structure potentially damaging the fins. The fuzes tended to have a high fail rate and due to their design, they would instantly arm after release from the aircraft posing a direct to the delivery aircraft. Later modifications would eliminate many of the negative factors to include adding a nose fuze, time delaying arming of the fuze, strengthening of the stabilizing fins and adding primer detonators to ensure proper explosive train sequences. Other changes including streamlining all bomb bodies and utilising 100% T.N.T. as an explosive filler resulted in the newer “Modified Mark” series of Army bombs.
+
Early on, the Mark series of bombs proved to be largely unsatisfactory in a number of different areas.  The bomb body itself was weak due to the sheet metal it was made from and the number of welds needed to join the pieces together. The stabilizing fins were made of flimsy metal which tended to distort during both the handling and flight of the bomb, adversely affecting accuracy.  For the field technicians, inserting the fuse was a complicated process which required removing the stabilizing fin structure potentially damaging the fins. The fuses tended to have a high fail rate and due to their design, they would instantly arm after release from the aircraft posing a direct to the delivery aircraft. Later modifications would eliminate many of the negative factors to include adding a nose fuse, time delaying arming of the fuse, strengthening of the stabilizing fins and adding primer detonators to ensure proper explosive train sequences. Other changes including streamlining all bomb bodies and utilising 100% T.N.T. as an explosive filler resulted in the newer “Modified Mark” series of Army bombs.
  
 
Prior to World War II, the military determined that the Modified Mark series of bombs were obsolete requiring newer and up-to-date bombs to be developed.  Both the U.S. Army and Navy began development of their own series of bombs, the Army with the “M” series and the Navy with their “Mk” series. Both similar, these bombs were designed with parallel sides, an ogival nose and a boat tail which is a box type-tail reinforced to prevent warping and aid with accurate drops. Due to the shortage of T.N.T., the Army filled their bombs with 50/50 Amatol with T.N.T. ends to seal in the Amatol and protect it from moisture.  The Navy, on the other hand, continued to manufacture their bombs with 100% T.N.T.
 
Prior to World War II, the military determined that the Modified Mark series of bombs were obsolete requiring newer and up-to-date bombs to be developed.  Both the U.S. Army and Navy began development of their own series of bombs, the Army with the “M” series and the Navy with their “Mk” series. Both similar, these bombs were designed with parallel sides, an ogival nose and a boat tail which is a box type-tail reinforced to prevent warping and aid with accurate drops. Due to the shortage of T.N.T., the Army filled their bombs with 50/50 Amatol with T.N.T. ends to seal in the Amatol and protect it from moisture.  The Navy, on the other hand, continued to manufacture their bombs with 100% T.N.T.
Line 62: Line 64:
 
With the approach of World War II, the U.S. Army (including the Army Air Corps) and the Navy standardized their series of bombs allowing for interchanging between services, consolidating manufacturing capabilities and allowing for modifications which enabled British service aircraft to mount these bombs too. Even after the standardization of bombs in 1941, the standardization process went through a few phases of further refinement, the first of which changed all high-explosive bombs to be termed general purpose (G.P.) or general purpose high-explosive (G.P.H.E). Later the designation of demolition bomb would come back for a few specific bombs.
 
With the approach of World War II, the U.S. Army (including the Army Air Corps) and the Navy standardized their series of bombs allowing for interchanging between services, consolidating manufacturing capabilities and allowing for modifications which enabled British service aircraft to mount these bombs too. Even after the standardization of bombs in 1941, the standardization process went through a few phases of further refinement, the first of which changed all high-explosive bombs to be termed general purpose (G.P.) or general purpose high-explosive (G.P.H.E). Later the designation of demolition bomb would come back for a few specific bombs.
  
When bombs are dropped, there is always a chance that something in the explosive train of the bomb will fail and it will not explode. Early AN style bombs were defuzable in the event they did not explode on contact, meaning that any unexploded AN bomb could have the fuzes and boosters removed without the bomb exploding, rendering it inert. To counter this and allow for the potential “dud” bomb to explode when tampered with, the AN G.P.H.E. series bombs with the modification “A1” annotated that these bombs now had special pins mounted in the bomb’s baseplate which fuzed with the explosive filler making it impossible to remove the booster without causing the bomb to detonate. Other modifications later added would include minor changes to the bomb body or the type of explosive filling used. During this time a second option for bomb tails was added, the box-type tail was already the mainstay of the bombs, however, to create a more aerodynamic bomb a conical tail assembly was added.  This stretched out low profile tail improved the aerodynamics of the carrying aircraft, allowing it to carry more ordnance.
+
When bombs are dropped, there is always a chance that something in the explosive train of the bomb will fail and it will not explode. Early AN style bombs were defusable in the event they did not explode on contact, meaning that any unexploded AN bomb could have the fuses and boosters removed without the bomb exploding, rendering it inert. To counter this and allow for the potential “dud” bomb to explode when tampered with, the AN G.P.H.E. series bombs with the modification “A1” annotated that these bombs now had special pins mounted in the bomb's baseplate which fused with the explosive filler making it impossible to remove the booster without causing the bomb to detonate. Other modifications later added would include minor changes to the bomb body or the type of explosive filling used. During this time a second option for bomb tails was added, the box-type tail was already the mainstay of the bombs, however, to create a more aerodynamic bomb a conical tail assembly was added.  This stretched out low profile tail improved the aerodynamics of the carrying aircraft, allowing it to carry more ordnance.
  
 
Progressing towards the Korean and Vietnam wars, piston-driven aircraft were giving way to jet fighters, bombers and attackers, many of which carried their ordnance on external pylons hung under the wing or underbelly. The new Mk 80 series bombs (Mk 81, 82, 83 and 84) were developed to keep external hung ordnance from creating too much drag on the delivery aircraft. Initially, the Mk 81 250 lb bombs were considered ineffective for their size or required a large amount to be effective and were removed from the munitions inventory.  All-weather fighters and attackers were now being outfitted with the Mk series bombs and a new problem developed when it came to low-altitude attacks (typically coming in under low cloud cover) where the aircraft would deploy its ordinance  which would hit the ground and explode catching the delivery aircraft in either the explosive blast or the shock-wave from the blast.
 
Progressing towards the Korean and Vietnam wars, piston-driven aircraft were giving way to jet fighters, bombers and attackers, many of which carried their ordnance on external pylons hung under the wing or underbelly. The new Mk 80 series bombs (Mk 81, 82, 83 and 84) were developed to keep external hung ordnance from creating too much drag on the delivery aircraft. Initially, the Mk 81 250 lb bombs were considered ineffective for their size or required a large amount to be effective and were removed from the munitions inventory.  All-weather fighters and attackers were now being outfitted with the Mk series bombs and a new problem developed when it came to low-altitude attacks (typically coming in under low cloud cover) where the aircraft would deploy its ordinance  which would hit the ground and explode catching the delivery aircraft in either the explosive blast or the shock-wave from the blast.
Line 75: Line 77:
 
* ''reference to the article about the variant of the weapon;''
 
* ''reference to the article about the variant of the weapon;''
 
* ''references to approximate analogues by other nations and research trees.'' -->
 
* ''references to approximate analogues by other nations and research trees.'' -->
 
 
* [[US Bombs General Information]]
 
* [[US Bombs General Information]]
  
 
== External links ==
 
== External links ==
 
''Paste links to sources and external resources, such as:''
 
''Paste links to sources and external resources, such as:''
 
 
* ''topic on the official game forum;''
 
* ''topic on the official game forum;''
 
* ''encyclopedia page on the weapon;''
 
* ''encyclopedia page on the weapon;''

Revision as of 10:30, 30 October 2019

Description

The AN-M65A1 Fin M129 1,000 lb bomb is an aerial bomb developed for the United States Army Air Corps and United States Navy in 1939, just prior to WWII. It is a General Purpose bomb that is employed against pretty much any target that may be encountered, and, due to its weight, has a powerful blast, and is very effective against vehicles, infrastructure and ships. It was designed to have a somewhat thin shell and pack the highest possible amount of explosives (in this case, Amatol), and was used chiefly by heavy bombers such as the B-17 Flying Fortress and the B-24 Liberator, although smaller aircraft such as the P-47 Thunderbolt, P-51 Mustang and F4U Corsair could use it (but didn't as often).

After the war this bomb was more widely used, being commonly fitted to ground attack aircraft and was favoured by the US Navy, which used them extensively in the Korean War in the F9F Panther and AD-4 Skyraider. As it was being used by smaller aircraft that carried it externally instead instead of packing them into an internal bomb bay, measures were taken to reduce their drag, and so the M129 Fin was developed and fitted to this weapon.

This bomb is also notable for being involved in the 1967 USS Forrestal fire, in which one of these bombs was detonated in the deck of the USS Forrestal by flaming jet fuel, killing dozens of sailors and wounding many more (the whole incident would have a death toll of 134 sailors killed and 161 wounded).

Vehicles equipped with this weapon

Vehicles equipped with this weapon
Fighters  S.O.8000 Narval
Jet fighters 
CL-13  CL-13 Mk.4 · ◄CL-13A Mk 5 · ◄CL-13B Mk.6
F9F  F9F-8
F-86A  F-86A-5
F-86F  F-86F-2 · F-86F-25 · F-86F-30 ▅ · ␗F-86F-30 · F-86F-35 · F-86F-40 ▅ · F-86F-40 JASDF▅
MD.450  M.D.450B Barougan · M.D.450B Ouragan
MD.452  M.D.452 IIC
MD.460  Super Mystere B2
Jet bombers  B-57A · B-57B · S.O.4050 Vautour IIA · Vautour IIA IDF/AF · S.O.4050 Vautour IIB

General info

This bomb weighs 1,000 pounds, roughly 454 kg. This is a bomb of considerable size, and as such, is also quite powerful. Approximately half of this weight is comprised by the Amatol filling (240.4 kg or 530 lb), making this a very capable bomb, and can be very effective against pretty much any target.

Effective damage

Being a General Purpose bomb, this weapon relies on Blast and Splash damage effects to harm and destroy its targets.

Comparison with analogues

Similar weapons would be the German SC500K (500 kg) bomb (which is more powerful), the Soviet FAB-500 (500 kg) bomb (slightly weaker), the British M.C. 1,000 lb Mk.I (1,000 lb) bomb (considerably more powerful) and the G.P. 1,000 lb Mk.I (1,000 lb) bomb (slightly weaker), the Japanese Army Type 92 GPHE (500 kg) bomb (both Army and Navy bombs are slightly weaker than the AN-M65A1), the Italian GP 500 (500 kg) bomb (slightly weaker) and the French №.2 (500 kg) bomb (which is considerably more powerful).

Usage in battles

Describe situations when you would utilise this bomb in-game (vehicle, pillbox, base, etc)

Pros and cons

Summarise and briefly evaluate the weaponry in terms of its characteristics and combat effectiveness. Mark pros and cons as a list.

Pros:

Cons:

History

Early in aviation history, applications for aircraft to serve in a military capacity surfaced, not only with the intent to scout a battlefield from an aerial vantage point but for the possibility to drop explosive bombs too. Due to the frail nature of the early wood-frame and cloth covered aircraft, lifting capacity resulted in the ability to only carry small bombs. Effectively these early bombers were hailed as aerial artillery fire which could reach targets hundreds of miles further than the most powerful land-based cannons of the time. Prior to the war, contests abounded where pilots would drop oranges or flour sacks upon predesignated targets to see who could hit closes to the centre.

Italian aviators were the first to use bombs in a warfare capacity in 1912 during their campaign of Tripoli. These first bombs were conversions of existing cannon ammunition and were effective only against personnel as they did not provide a strong enough provision to damage hardened equipment or structures. As lifting capacity of aircraft increased, so did the ability for them to carry more and larger explosives.

For the United States, bomb design did not become a priority until the middle of 1917 when a French official came to the U.S. with several samples of the Gros Andreau bombs which the French were using in large quantities at that time. Immediately these bombs were accepted by the U.S. and used as a standard in developing the first three sizes to be implemented in the military. These three bombs were known as the early “Mark” series, 25 lb Mk.I demolition bomb, 50 lb Mk.I demolition bomb and the 100 lb Mk.I demolition bomb. By December 1917, only six months later, the military put forth requirements for the development of bombs larger than the existing 100 lb bomb. After two more months of development, production of demolition bombs up to 1,000 lbs was started. Rejected 3-inch artillery rounds were the basis for early 25 lb bombs which were modified into a streamlined shape, very similar to the British Cooper bombs of the time. Larger bombs were manufactured and filled with explosive filler, all of which were placed into a streamlined body, of which a cylindrical shape was the most advantageous.

Early on, the Mark series of bombs proved to be largely unsatisfactory in a number of different areas. The bomb body itself was weak due to the sheet metal it was made from and the number of welds needed to join the pieces together. The stabilizing fins were made of flimsy metal which tended to distort during both the handling and flight of the bomb, adversely affecting accuracy. For the field technicians, inserting the fuse was a complicated process which required removing the stabilizing fin structure potentially damaging the fins. The fuses tended to have a high fail rate and due to their design, they would instantly arm after release from the aircraft posing a direct to the delivery aircraft. Later modifications would eliminate many of the negative factors to include adding a nose fuse, time delaying arming of the fuse, strengthening of the stabilizing fins and adding primer detonators to ensure proper explosive train sequences. Other changes including streamlining all bomb bodies and utilising 100% T.N.T. as an explosive filler resulted in the newer “Modified Mark” series of Army bombs.

Prior to World War II, the military determined that the Modified Mark series of bombs were obsolete requiring newer and up-to-date bombs to be developed. Both the U.S. Army and Navy began development of their own series of bombs, the Army with the “M” series and the Navy with their “Mk” series. Both similar, these bombs were designed with parallel sides, an ogival nose and a boat tail which is a box type-tail reinforced to prevent warping and aid with accurate drops. Due to the shortage of T.N.T., the Army filled their bombs with 50/50 Amatol with T.N.T. ends to seal in the Amatol and protect it from moisture. The Navy, on the other hand, continued to manufacture their bombs with 100% T.N.T.

With the approach of World War II, the U.S. Army (including the Army Air Corps) and the Navy standardized their series of bombs allowing for interchanging between services, consolidating manufacturing capabilities and allowing for modifications which enabled British service aircraft to mount these bombs too. Even after the standardization of bombs in 1941, the standardization process went through a few phases of further refinement, the first of which changed all high-explosive bombs to be termed general purpose (G.P.) or general purpose high-explosive (G.P.H.E). Later the designation of demolition bomb would come back for a few specific bombs.

When bombs are dropped, there is always a chance that something in the explosive train of the bomb will fail and it will not explode. Early AN style bombs were defusable in the event they did not explode on contact, meaning that any unexploded AN bomb could have the fuses and boosters removed without the bomb exploding, rendering it inert. To counter this and allow for the potential “dud” bomb to explode when tampered with, the AN G.P.H.E. series bombs with the modification “A1” annotated that these bombs now had special pins mounted in the bomb's baseplate which fused with the explosive filler making it impossible to remove the booster without causing the bomb to detonate. Other modifications later added would include minor changes to the bomb body or the type of explosive filling used. During this time a second option for bomb tails was added, the box-type tail was already the mainstay of the bombs, however, to create a more aerodynamic bomb a conical tail assembly was added. This stretched out low profile tail improved the aerodynamics of the carrying aircraft, allowing it to carry more ordnance.

Progressing towards the Korean and Vietnam wars, piston-driven aircraft were giving way to jet fighters, bombers and attackers, many of which carried their ordnance on external pylons hung under the wing or underbelly. The new Mk 80 series bombs (Mk 81, 82, 83 and 84) were developed to keep external hung ordnance from creating too much drag on the delivery aircraft. Initially, the Mk 81 250 lb bombs were considered ineffective for their size or required a large amount to be effective and were removed from the munitions inventory. All-weather fighters and attackers were now being outfitted with the Mk series bombs and a new problem developed when it came to low-altitude attacks (typically coming in under low cloud cover) where the aircraft would deploy its ordinance which would hit the ground and explode catching the delivery aircraft in either the explosive blast or the shock-wave from the blast.

Modifications were developed to slow down or retard the flight of bombs, allowing for the delivery aircraft to depart out of the blast zone before they hit and detonated. Several options became available which allowed these bombs to remain aerodynamic low-drag while en-route to the target, but when deployed converted to high-drag, slower falling bombs. One option was to attach four bladed plates to the rear of the bomb so that when the bomb deployed, these plates would pop out and create high-drag to slow the fall. Another option was to use a ballute which was basically an airbag which deployed from the rear of the bomb that acted like a drogue chute, effectively causing high-drag. Later during the fighting in Iraq, the US military brought back the 250 lb Mk 81 bombs due to their ability to be used when deploying against a specific target and to help minimize collateral damage.

Media

An excellent addition to the article would be a video guide, as well as screenshots from the game and photos.

See also

External links

Paste links to sources and external resources, such as:

  • topic on the official game forum;
  • encyclopedia page on the weapon;
  • other literature.


High-explosive and general-purpose bombs
USA 
100 lb  AN-M30A1
250 lb  AN-M57 · LDGP Mk 81
300 lb  H.E. M31
500 lb  AN-M64A1 · LDGP Mk 82
600 lb  H.E. M32
750 lb  M117 cone 45
1,000 lb  AN-M65A1 · AN-M65A1 Fin M129 · LDGP Mk 83
2,000 lb  AN-M66A2 · LDGP Mk 84
3,000 lb  M118
4,000 lb  AN-M56
Germany 
50 kg  SC50JA
200 kg  Sprengbombe
250 kg  SC250JA
400 kg  Sprengbombe
450 kg  Sprengbombe 68/70
500 kg  SC500K
1,000 kg  SC1000L2
1,800 kg  SC1800B
2,500 kg  SC2500
USSR 
25 kg  AO-25M-1
50 kg  FAB-50sv
100 kg  FAB-100sv · FAB-100M-43 · OFAB-100
250 kg  FAB-250sv · FAB-250M-43 · FAB-250M-44 · FAB-250M-46 · FAB-250M-54 · FAB-250M-62 · OFAB-250sv · OFAB-250-270
500 kg  FAB-500sv · FAB-500M-43 · FAB-500M-44 · FAB-500M-46 · FAB-500M-54 · FAB-500M-62
1,000 kg  FAB-1000 · FAB-1000M-43 · FAB-1000M-44
1,500 kg  FAB-1500M-46
3,000 kg  FAB-3000M-46
5,000 kg  FAB-5000
Britain 
250 lb  G.P. Mk.IV · M.C. Mk.I
500 lb  G.P. Mk.IV · H.E. M.C. Mk.II · M.C. Mk.I
540 lb  Mk.M2
1,000 lb  G.P. Mk.I · M.C. Mk.I · L.D H.E. M.C. Mk.1 · H.E. M.C. Mk.13
4,000 lb  H.C. Mk.II · H.C. Mk.IV
8,000 lb  H.C. Mk.II
12,000 lb  H.C Mk.I
Japan 
Army 
50 kg  Type 94 GPHE
100 kg  Type 94 GPHE
250 kg  Type 92 GPHE
500 kg  Type 92 GPHE
Navy 
60 kg  Type 97 Number 6
250 kg  Type 98 Number 25 · Type Number 25 Model 2
500 kg  Type Number 50 Model 2
800 kg  Number 80 Mod. 1
China 
100 kg  100-2
250 kg  Type 250-2 · 250-3
500 kg  500-3
1500 kg  1500-2
3000 kg  3000-2
Italy 
50 kg  GP 50
100 kg  GP 100T · SAP 100M
230 kg  BAFG-230
250 kg  GP 250
460 kg  BAFG-460
500 kg  GP 500
800 kg  GP 800
920 kg  BAFG-920
France 
50 kg  D.T. No.2 · G.A. MMN. 50 · Type 61C
75 kg  G2 Navale
100 kg  No.1
250 lb  SAMP Mk 81
150 kg  I2 Navale
200 kg  No.1
500 lb  SAMP Mk 82
250 kg  Matra 25E · SAMP Type 25
400 kg  SAMP Type 21
1,000 lb  SAMP Mk 83
500 kg  No.2
2,000 lb  SAMP Mk 84
Sweden 
50 kg  mb m/37AT · sb m/42 · sb m/47 · Model 1938
100 kg  Model 1938
120 kg  sb m/61 · m/71
250 kg  mb m/40 · mb m/50
500 kg  mb m/41 · mb m/56
600 kg  mb m/50
Israel 
100 kg  100/50 kg G.P.
250 kg  250/50 kg G.P.
360 kg  360/50 kg G.P.
500 kg  500/50 kg G.P.
See also  List of armour-piercing bombs · List of guided bombs · List of retarded bombs