Difference between revisions of "F-86F-2"

From War Thunder Wiki
Jump to: navigation, search
(Advanced history on F-86F-2 and gun val project)
(Edits)
Line 144: Line 144:
 
== Usage in battles ==
 
== Usage in battles ==
 
<!-- ''Describe the tactics of playing in the aircraft, the features of using aircraft in a team and advice on tactics. Refrain from creating a "guide" - do not impose a single point of view, but instead, give the reader food for thought. Examine the most dangerous enemies and give recommendations on fighting them. If necessary, note the specifics of the game in different modes (AB, RB, SB).'' -->
 
<!-- ''Describe the tactics of playing in the aircraft, the features of using aircraft in a team and advice on tactics. Refrain from creating a "guide" - do not impose a single point of view, but instead, give the reader food for thought. Examine the most dangerous enemies and give recommendations on fighting them. If necessary, note the specifics of the game in different modes (AB, RB, SB).'' -->
In RB, speed is life on this plane. First thing that should be done after takeoff is gaining at least 800-900 kph IAS in level flight and zoom climbing to around 2 km(or we can fight even at the deck, all depends on situation). Maintaining speed at 800 kph is very important. BnZ is main tactic, don't engage in vertical with MiG-15bis. Sabre easily outdive MiG-15bis(Sabre have higher top speed, which means MiG-15bis won't be able to catch Sabre in level flight/dive). Avoid flying slow and turnfighting.
+
In RB, speed is life on this plane. First thing that should be done after takeoff is gaining at least 800-900 km/h IAS in level flight and zoom climbing to around 2 km (or we can fight even at the deck, all depends on situation). Maintaining speed at 800 km/h is very important. BnZ is main tactic, don't engage in vertical with MiG-15bis. Sabre easily outdive MiG-15bis (Sabre have higher top speed, which means MiG-15bis won't be able to catch Sabre in level flight/dive). Avoid flying slow and turnfighting.
  
 
===Radars===
 
===Radars===
Line 189: Line 189:
 
<!-- ''Describe the history of the creation and combat usage of the aircraft in more detail than in the introduction. If the historical reference turns out to be too long, take it to a separate article, taking a link to the article about the vehicle and adding a block "/History" (example: <nowiki>https://wiki.warthunder.com/(Vehicle-name)/History</nowiki>) and add a link to it here using the <code>main</code> template. Be sure to reference text and sources by using <code><nowiki><ref></ref></nowiki></code>, as well as adding them at the end of the article with <code><nowiki><references /></nowiki></code>. This section may also include the vehicle's dev blog entry (if applicable) and the in-game encyclopedia description (under <code><nowiki>=== In-game description ===</nowiki></code>, also if applicable).'' -->
 
<!-- ''Describe the history of the creation and combat usage of the aircraft in more detail than in the introduction. If the historical reference turns out to be too long, take it to a separate article, taking a link to the article about the vehicle and adding a block "/History" (example: <nowiki>https://wiki.warthunder.com/(Vehicle-name)/History</nowiki>) and add a link to it here using the <code>main</code> template. Be sure to reference text and sources by using <code><nowiki><ref></ref></nowiki></code>, as well as adding them at the end of the article with <code><nowiki><references /></nowiki></code>. This section may also include the vehicle's dev blog entry (if applicable) and the in-game encyclopedia description (under <code><nowiki>=== In-game description ===</nowiki></code>, also if applicable).'' -->
 
=== The "Gun Val" Project ===
 
=== The "Gun Val" Project ===
As is well-known that most of F-86 Saber fighters of USAF which joined the Korean War have six AN/M3 12.7mm machine-gun as their basic weapon configuration against enemy aircraft. Although the experience of the European battlefield during World War II shows that an average of 300 rounds of 12.7mm bullets can shoot down an enemy aircraft, the U.S pilot found that sometimes their 12.7 mm machine-gun can’t easily shot down enemy MiG fighters even when they score many hits on them, especially once a Soviet MiG-15 fighter was able to return to base safely even with more than 200 bullet holes. Though there were also many F-86 fighter successfully return to the airfield when they were hit by the 23 mm or 37 mm cannon of MiG-15 fighter, it was no doubt the fact that USAF needed a new airborne weapon to replace the aged 12.7 mm machine gun.
+
As is well-known, most F-86 Sabre fighters of the USAF that joined the Korean War had six AN/M3 12.7 mm machine guns as their basic weapon configuration against enemy aircraft. Although the experience of the European battlefield during World War II showed that an average of 300 12.7 mm bullets could shoot down an enemy aircraft, the US pilots found that sometimes their 12.7 mm machine guns couldn't easily shoot down enemy MiG fighters even when they scored many hits on them. Though there were also many F-86 fighters that successfully returned to the airfield when they were hit by the 23 mm or 37 mm cannon of the MiG-15 fighter, there was no doubt that the USAF needed a new airborne weapon to replace the aged 12.7 mm machine gun.
  
Although USAF had successfully introduced the famous M24A1 20 mm cannon on the Convair B-36 Peacemaker Strategic bomber which was the Air Force version of the Navy’s AN/M3 20 mm cannon, they don’t want to simply introduce the old 20 mm cannon to the F-86F Saber fighter because its rate of fire (700-800 rounds per minute) was found unsuitable for the modern air combat. Therefore, a research project named Gun Val was established on April 3<sup>rd</sup> 1951 to find out the most suitable cannon which could incorporating into current Saber fighter and the incoming Centuries Series Aircraft. (Other aircraft that have participated in the Gun Val program like F-94B, F-84F and F-89C will not be described in this article )
+
Although the USAF had successfully introduced the M24A1 20 mm cannon, the Air Force's version of the Navy's AN/M3 20 mm cannon, on the Convair B-36 Peacemaker strategic bomber, they don't want to simply introduce the old 20 mm cannon to the F-86F Sabre fighter because its rate of fire (700-800 rounds per minute) was found unsuitable for modern air combat. Therefore, a research project named "Gun Val" was established on April 3rd 1951 to find out the most suitable cannon which could be incorporated into current Sabre fighter and the incoming Century Series aircraft. (Other aircraft such as F-94B, F-84F, and F-89C also participated in the Gun Val program).
  
North American Aviation Company delivered four F-86E-10 and six F-86F-1 Saber fighters to the Air Material Command to test the newly developed T-160 20×102 mm cannon. As for the T-160 cannon, it was a single-barreled revolver cannon which was an imitation of the captured German MG213C 20 mm revolver cannon, the latter was transported to the USA in 1946. Thanks to the cooperation of Springfield Arsenal and the Illinois Institute of Technology, the initial development work of the T-160 cannon was finished in the early 1950s, and it was put into the production line in June 1951. In general, it was a gas-operated, belt-fed, electrically fired weapon, the cannon was capable of firing electrically primed ammunition at the rate of 1500 rounds per minute and develops a muzzle velocity of 3250 feet per second. There were five types of 20×102 mm cartridges available for the T-160 cannon, including M55A1 and M55A2 ball, M53 Armor-Piercing-Incendiary and M56 High-Explosive-Incendiary ammunition.
+
North American Aviation Company delivered four F-86E-10 and six F-86F-1 Sabre fighters to Air Material Command to test the newly developed T-160 20×102 mm cannon. The T-160 cannon was a single-barreled revolver cannon which was an imitation of the captured German MG213C 20 mm revolver cannon, the latter had been transported to the USA in 1946. Thanks to the cooperation of Springfield Arsenal and the Illinois Institute of Technology, the initial development work of the T-160 cannon was finished in the early 1950s, and it was put into the production line in June 1951. It was a gas-operated, belt-fed, electrically fired weapon, the cannon was capable of firing electrically primed ammunition at a rate of 1,500 rounds per minute and developed a muzzle velocity of 3,250 feet per second. There were five types of 20×102 mm cartridges available for the T-160 cannon, including M55A1 and M55A2 ball, M53 Armour-piercing Incendiary and M56 High-Explosive Incendiary ammunition.
  
=== The Oerlikon Counterpart ===
 
 
[[File:F-86F-3 with Oerlikon cannon.jpg|left|thumb|353x353px|F-86F-3 armed with Oerlikon cannons.]]
 
[[File:F-86F-3 with Oerlikon cannon.jpg|left|thumb|353x353px|F-86F-3 armed with Oerlikon cannons.]]
Apart from that, another cannon joined the competition with T-160 cannon was the Oerlikon 206 RK 20mm cannon which was also a revolver gun, it was capable of firing electrically primed ammunition at the rate of 1650 rounds per minute and develops a muzzle velocity of 3500 feet per second which were both higher than T-160 cannon.
+
Another cannon joining the competition with the T-160 cannon was the Oerlikon 206 RK 20 mm cannon which was also a revolver gun, capable of firing electrically primed ammunition at the rate of 1,650 rounds per minute and a muzzle velocity of 3,500 feet per second which were both higher than T-160 cannon.
  
The 10 Saber fighters fitted with four T-160 cannon was called F-86F-2 while the remaining two Saber fighters with four Saber fighters with four Oerlikon 206 RK cannon was called F-86F-3. As for the F-86F-3, the USAF didn’t receive any of them until April 1954, and the final test report was finished in February 1955 which pointed that the Oerlikon 206 RK cannon had lots of problems that needed to be solved before it entered into service, such as the poor round dispersion of the gun and installation problems. Though the company claimed that these problems could be solved in the future, but at that time the M39 revolver cannon had been put into mass production many years ago, so not surprisingly that the Oerlikon program was canceled in the end.
+
The 10 Sabre fighters fitted with four T-160 cannons were called F-86F-2 while two Sabre fighters with four Oerlikon 206 RK cannons were called F-86F-3. As for the F-86F-3, the USAF didn't receive any of them until April 1954, and the final test report, finished in February 1955, outlined that the Oerlikon 206 RK cannon had lots of problems that needed to be solved before it entered into service, such as poor round dispersion of the gun and installation problems. Though the company claimed that these problems could be solved in the future, at that time the M39 revolver cannon had been put into mass production many years ago, so not surprisingly that the Oerlikon program was canceled in the end.
  
As a comparison, those ten F-86F-2 fighters equipped with T-160 cannon were much luckier. Apart from the cannon, all F-86F-2 fighters were fitted with new 6-3 wing, and both the original A-4 gun/rocket/bomb calculating sight and the AN/APG-30 Ranging Radar was remained. After the initial test was done, Lieutenant Colonel Peterson who was the project officer of Gun Val program at that time decided to took eight F-86F-2 fighters to Korea aboard the USS Windham Bay for combat trials in December 1952.
+
As a comparison, those ten F-86F-2 fighters equipped with T-160 cannon were much luckier. Apart from the cannon, all F-86F-2 fighters were fitted with new 6-3 wing, and both the original A-4 gun/rocket/bomb calculating sight and the AN/APG-30 ranging radar remained. After the initial test was done, Lieutenant Colonel Peterson who was the project officer of Gun Val program at that time decided to take eight F-86F-2 fighters to Korea aboard the USS Windham Bay for combat trials in December 1952.
  
All the F-86F-2 fighters were assigned to the 335<sup>th</sup> FIS of 4<sup>th</sup> FW at Kimpo, and only six aircraft were ever actually in Korea at any one time. When they arrived at Kimpo, these F-86F-2 fighters were re-painted as other original F-86F Saber fighter such as the black and yellow FEAF ID bands and yellow and black tail stripe, also the ground crews painted the third gun port on the nose under two 20mm muzzle to make them looks no difference with the original F-86F Saber fighter. Apart from that, the commander of F-86F-2 team was changed to Colonel Garrison, but Peterson was still stayed there as a contractor technician with other three contractor technicians and five assigned pilots.
+
All the F-86F-2 fighters were assigned to the 335th FIS of 4th Fighter Wing at Kimpo, and only six aircraft were ever actually in Korea at any one time. When they arrived at Kimpo, these F-86F-2 fighters were re-painted as other original F-86F Sabre fighter such as the black and yellow FEAF ID bands and yellow and black tail stripe. Ground crews also painted the third gun port on the nose under the two 20 mm muzzle to make them looks indistinguishable with the original machine gun-armed F-86F Sabre fighter. Apart from that, the commander of F-86F-2 team was changed to Colonel Garrison, but Peterson was still stayed there as a contractor technician with other three contractor technicians and five assigned pilots.
  
The combat trial was began in January 1953, though it was discovered that the cannon gas from the 20 mm cannon may cause a compressor stall which is very dangerous for both plane and its pilot, including one accident that Major Moorehead fired his 20 mm cannon in a long burst during one mission and cause the engine stop working, though he restart the engine, the problem was appeared again later. But even the Saber pilots chose to only use two cannon at one time to avoid the problem, they still fired almost 10900 rounds in combat, engaged MiG fighters in 41 missions and successfully shot down six of them (3 MiG fighters were probably destroyed and 13 MiG fighters damaged) with two F-86F-2 were damaged (one’s intake was being hit by the 37 mm shell and another one’s wing was being hit by the 23 mm shell), but unfortunately Captain Moore ’s plane suffered a flame-out accident followed by turbine failure on 30<sup>th</sup> April 1953, so he had to bail out in the end.
+
The combat trial began in January 1953, though it was discovered that the cannon gas from the 20 mm cannon may cause a compressor stall which was very dangerous for both plane and its pilot, including one accident when Major Moorehead fired his 20 mm cannon in a long burst during one mission and caused the engine stop working, though he was able to restart the engine, the problem appeared again later. But even with the Sabre pilots only using two cannons at a time to avoid the problem, they still fired almost 10,900 rounds in combat, engaged MiG fighters in 41 missions and successfully shot down six of them (3 MiG fighters were probably destroyed and 13 MiG fighters damaged) with two F-86F-2 were damaged (one's intake was hit by the 37 mm shell and another one's wing was hit by the 23 mm shell), but unfortunately Captain Moore's plane suffered a flame-out accident followed by turbine failure on 30th April 1953, so he had to bail out in the end.
 
[[File:See-through of F-86H and its M39 cannons.jpg|thumb|342x342px|F-86H with M39 cannons, the successor of T-160 and the Gun Val project.]]
 
[[File:See-through of F-86H and its M39 cannons.jpg|thumb|342x342px|F-86H with M39 cannons, the successor of T-160 and the Gun Val project.]]
To solve these problems, Peterson not only sent the report to the test center, but also found a way to simply solve the problem: a simple horseshoe clip installed in the blast tube of the cannon broke up the cannon gas before it could enter the intake. The Gun Val combat trial program was finished on May 1953, and in order to completely solve the cannon gas problem, the engineers of North American Aviation company invented a C-shaped plate which could effectively dissipated the cannon gas, this solution was finally adopted for operational use on the late version of F-86H fighter with four M39 cannons.  
+
To solve these problems, Peterson not only sent the report to the test center, but also found a way to simply solve the problem: a simple horseshoe clip installed in the blast tube of the cannon broke up the cannon gas before it could enter the intake. The Gun Val combat trial program was finished on May 1953, and in order to completely solve the cannon gas problem, the engineers of North American Aviation company invented a C-shaped plate which could effectively dissipated the cannon gas, this solution was finally adopted for operational use on the late version of F-86H fighter with four M39 cannons.
  
Inspire by the success of the Gun Val program, USAF finally decided to accept the T-160 cannon as its next-generation air-combat weapon and renamed it as M39 20 mm cannon. The first operational fighter equip with M39 cannon was North American Aviation F-86H-5 Saber fighter in mid 1950s, then it became the standard internal weapon on both North American Aviation F-100 Super Saber fighter, McDonnell F-101A Voodoo long-range escort fighter and Northrop F-5 fighter. 
+
Inspire by the success of the Gun Val program, USAF finally decided to accept the T-160 cannon as its next-generation air-combat weapon and renamed it as M39 20 mm cannon. The first operational fighter equip with M39 cannon was North American Aviation F-86H-5 Sabre fighter in mid 1950s, then it became the standard internal weapon on both North American Aviation F-100 Super Sabre fighter, McDonnell F-101A Voodoo long-range escort fighter and Northrop F-5 fighter.
  
 
== Media ==
 
== Media ==
Line 238: Line 237:
  
 
== External links ==
 
== External links ==
<!--''Paste links to sources and external resources, such as:''
+
<!-- ''Paste links to sources and external resources, such as:''
 
* ''topic on the official game forum;''
 
* ''topic on the official game forum;''
 
* ''encyclopedia page on the aircraft;''
 
* ''encyclopedia page on the aircraft;''
* ''other literature.''-->
+
* ''other literature.'' -->
  
 
* [https://forum.warthunder.com/index.php?/topic/272058-north-american-f-86f-2/ Official data sheet - more details about the performance]
 
* [https://forum.warthunder.com/index.php?/topic/272058-north-american-f-86f-2/ Official data sheet - more details about the performance]

Revision as of 09:36, 23 June 2021

Rank VI USA | Premium | Golden Eagles
A-10A Thunderbolt (Early)
This page is about the American jet fighter F-86F-2. For other variants, see F-86 (Family).
F-86F-2
f-86f-2.png
GarageImage F-86F-2.jpg
360://https://wiki.warthunder.com/images/6/6f/Cockpit_f-86f-2.jpg
F-86F-2
AB RB SB
9.0 8.7 9.0
Research:135 000 Specs-Card-Exp.png
Purchase:380 000 Specs-Card-Lion.png
Show in game

Description

The F-86F-2 Sabre is a rank VI American jet fighter with a battle rating of 9.0 (AB/SB) and 8.7 (RB). It was introduced in Update 1.35.

General info

Flight performance

Air brakes
Allows you to dramatically reduce the flight speed by releasing special flaps
Max speed
at 0 m1 106 km/h
Turn time24 s
Max altitude14 700 m
EngineGeneral Electric J47-GE-27
TypeJet
Cooling systemAir
Take-off weight10 t
Characteristics Max Speed
(km/h at 0 m - sea level)
Max altitude
(metres)
Turn time
(seconds)
Rate of climb
(metres/second)
Take-off run
(metres)
AB RB AB RB AB RB
Stock 1,095 1,089 14700 24.7 25.9 38.8 35.9 750
Upgraded 1,115 1,106 23.6 24.0 56.5 46.7

Details

Features
Combat flaps Take-off flaps Landing flaps Air brakes Arrestor gear Drogue chute
X X
Limits
Wings (km/h) Gear (km/h) Flaps (km/h) Max Static G
Combat Take-off Landing + -
0 350 590 550 350 ~11 ~6
Optimal velocities (km/h)
Ailerons Rudder Elevators Radiator
< 850 < 600 < 650 N/A

Engine performance

Engine Aircraft mass
Engine name Number Empty mass Wing loading (full fuel)
General Electric J47-GE-27 1 5,570 kg 243 kg/m2
Engine characteristics Mass with fuel (no weapons load) Max Takeoff
Weight
Weight (each) Type 7m fuel 20m fuel 26m fuel
1,150 kg Axial-flow turbojet 5,927 kg 6,569 kg 6,866 kg 9,530 kg
Maximum engine thrust @ 0 m (RB / SB) Thrust to weight ratio @ 0 m (100%)
Condition 100% WEP 7m fuel 20m fuel 26m fuel MTOW
Stationary 2,626 kgf N/A 0.44 0.40 0.38 0.28
Optimal 2,626 kgf
(0 km/h)
N/A 0.44 0.40 0.38 0.28

Survivability and armour

Crew1 person
Speed of destruction
Structural0 km/h
Gear350 km/h
  • 6.35 mm steel - in front of cockpit
  • 12.7 mm steel - behind pilot
  • 38 mm bulletproof glass - armoured windscreen
  • 20 mm steel pilot's headrest

Modifications and economy

Repair costBasic → Reference
AB3 250 → 4 358 Sl icon.png
RB9 442 → 12 661 Sl icon.png
SB10 098 → 13 541 Sl icon.png
Total cost of modifications120 600 Rp icon.png
192 000 Sl icon.png
Talisman cost2 300 Ge icon.png
Crew training110 000 Sl icon.png
Experts380 000 Sl icon.png
Aces2 000 Ge icon.png
Research Aces830 000 Rp icon.png
Reward for battleAB / RB / SB
120 / 380 / 600 % Sl icon.png
208 / 208 / 208 % Rp icon.png
Modifications
Flight performance Survivability Weaponry
Mods aerodinamic fuse.png
Fuselage repair
Research:
8 100 Rp icon.png
Cost:
13 000 Sl icon.png
320 Ge icon.png
Mods jet compressor.png
Compressor
Research:
8 100 Rp icon.png
Cost:
13 000 Sl icon.png
320 Ge icon.png
Mods booster.png
New boosters
Research:
9 100 Rp icon.png
Cost:
14 000 Sl icon.png
360 Ge icon.png
Mods aerodinamic wing.png
Wings repair
Research:
7 500 Rp icon.png
Cost:
12 000 Sl icon.png
300 Ge icon.png
Mods jet engine.png
Engine
Research:
7 500 Rp icon.png
Cost:
12 000 Sl icon.png
300 Ge icon.png
Mods g suit.png
G-suit
Research:
13 000 Rp icon.png
Cost:
21 000 Sl icon.png
510 Ge icon.png
Mods armor frame.png
Airframe
Research:
9 100 Rp icon.png
Cost:
14 000 Sl icon.png
360 Ge icon.png
Mods armor cover.png
Cover
Research:
13 000 Rp icon.png
Cost:
21 000 Sl icon.png
510 Ge icon.png
Mods ammo.png
t_160_belt_pack
Research:
8 100 Rp icon.png
Cost:
13 000 Sl icon.png
320 Ge icon.png
Mod arrow 1.png
Mods pilon rocket.png
FRC mk.2
Research:
9 100 Rp icon.png
Cost:
14 000 Sl icon.png
360 Ge icon.png
Mod arrow 0.png
Mods weapon.png
t_160_new_gun
Research:
7 500 Rp icon.png
Cost:
12 000 Sl icon.png
300 Ge icon.png
Mods pilon bomb.png
M117
Research:
7 500 Rp icon.png
Cost:
12 000 Sl icon.png
300 Ge icon.png
Mod arrow 0.png
Mods pilon bomb.png
FLBC mk.1
Research:
13 000 Rp icon.png
Cost:
21 000 Sl icon.png
510 Ge icon.png

Armaments

Offensive armament

Ammunition460 rounds
Fire rate1 500 shots/min
Main article: FMC T-160 (20 mm)

The F-86F-2 is armed with:

  • 4 x 20 mm FMC T-160 cannons, nose-mounted (115 rpg = 460 total)

Suspended armament

List of setups (3)
Setup 18 x HVAR rockets
8 x HVAR rockets
Setup 22 x 750 lb M117 cone 45 bomb
Setup 32 x 1000 lb AN-M65A1 Fin M129 bomb

The F-86F-2 can be outfitted with the following ordnance:

  • Without load
  • 16 x HVAR rockets
  • 2 x 1,000 lb AN-M65A1 Fin M129 bombs (2,000 lb total)

Usage in battles

In RB, speed is life on this plane. First thing that should be done after takeoff is gaining at least 800-900 km/h IAS in level flight and zoom climbing to around 2 km (or we can fight even at the deck, all depends on situation). Maintaining speed at 800 km/h is very important. BnZ is main tactic, don't engage in vertical with MiG-15bis. Sabre easily outdive MiG-15bis (Sabre have higher top speed, which means MiG-15bis won't be able to catch Sabre in level flight/dive). Avoid flying slow and turnfighting.

Radars

The F-86F-2 is equipped with an AN/APG-30 rangefinding radar, located in the nose of the aircraft. It will automatically detect other planes within the scanning area and display the range to the closest target. It is linked with a gyro gunsight and can help with aiming at close range.

AN/APG-30 - Rangefinding radar
Maximum
Tracking
Range
Minimum
Tracking
Range
Azimuth Tracking
Angle
Elevation Tracking
Angle
2,750 m 300 m ±9° ±9°

Pros and cons

Pros:

  • Very fast roll rate
  • Very accurate high-velocity cannons with little recoil
  • Excels overall at high-speed manoeuvres, good for snapshots
  • Good rate of turn in the horizontal
  • Good zooming ability
  • Energy retention superior to MiG-15
  • Superior acceleration from high speeds to top speed than MiG-15
  • Heavy bombs available if desired

Cons:

  • Extremely high rate of fire demand strict trigger discipline
  • Stock guns quickly jam when the trigger is held down
  • Poor acceleration from low speeds compared to MiG-15
  • Poor rate of climb
  • Wings easier to rip when boosters equipped
  • Air-brake is less effective than some opponents'

History

The "Gun Val" Project

As is well-known, most F-86 Sabre fighters of the USAF that joined the Korean War had six AN/M3 12.7 mm machine guns as their basic weapon configuration against enemy aircraft. Although the experience of the European battlefield during World War II showed that an average of 300 12.7 mm bullets could shoot down an enemy aircraft, the US pilots found that sometimes their 12.7 mm machine guns couldn't easily shoot down enemy MiG fighters even when they scored many hits on them. Though there were also many F-86 fighters that successfully returned to the airfield when they were hit by the 23 mm or 37 mm cannon of the MiG-15 fighter, there was no doubt that the USAF needed a new airborne weapon to replace the aged 12.7 mm machine gun.

Although the USAF had successfully introduced the M24A1 20 mm cannon, the Air Force's version of the Navy's AN/M3 20 mm cannon, on the Convair B-36 Peacemaker strategic bomber, they don't want to simply introduce the old 20 mm cannon to the F-86F Sabre fighter because its rate of fire (700-800 rounds per minute) was found unsuitable for modern air combat. Therefore, a research project named "Gun Val" was established on April 3rd 1951 to find out the most suitable cannon which could be incorporated into current Sabre fighter and the incoming Century Series aircraft. (Other aircraft such as F-94B, F-84F, and F-89C also participated in the Gun Val program).

North American Aviation Company delivered four F-86E-10 and six F-86F-1 Sabre fighters to Air Material Command to test the newly developed T-160 20×102 mm cannon. The T-160 cannon was a single-barreled revolver cannon which was an imitation of the captured German MG213C 20 mm revolver cannon, the latter had been transported to the USA in 1946. Thanks to the cooperation of Springfield Arsenal and the Illinois Institute of Technology, the initial development work of the T-160 cannon was finished in the early 1950s, and it was put into the production line in June 1951. It was a gas-operated, belt-fed, electrically fired weapon, the cannon was capable of firing electrically primed ammunition at a rate of 1,500 rounds per minute and developed a muzzle velocity of 3,250 feet per second. There were five types of 20×102 mm cartridges available for the T-160 cannon, including M55A1 and M55A2 ball, M53 Armour-piercing Incendiary and M56 High-Explosive Incendiary ammunition.

F-86F-3 armed with Oerlikon cannons.

Another cannon joining the competition with the T-160 cannon was the Oerlikon 206 RK 20 mm cannon which was also a revolver gun, capable of firing electrically primed ammunition at the rate of 1,650 rounds per minute and a muzzle velocity of 3,500 feet per second which were both higher than T-160 cannon.

The 10 Sabre fighters fitted with four T-160 cannons were called F-86F-2 while two Sabre fighters with four Oerlikon 206 RK cannons were called F-86F-3. As for the F-86F-3, the USAF didn't receive any of them until April 1954, and the final test report, finished in February 1955, outlined that the Oerlikon 206 RK cannon had lots of problems that needed to be solved before it entered into service, such as poor round dispersion of the gun and installation problems. Though the company claimed that these problems could be solved in the future, at that time the M39 revolver cannon had been put into mass production many years ago, so not surprisingly that the Oerlikon program was canceled in the end.

As a comparison, those ten F-86F-2 fighters equipped with T-160 cannon were much luckier. Apart from the cannon, all F-86F-2 fighters were fitted with new 6-3 wing, and both the original A-4 gun/rocket/bomb calculating sight and the AN/APG-30 ranging radar remained. After the initial test was done, Lieutenant Colonel Peterson who was the project officer of Gun Val program at that time decided to take eight F-86F-2 fighters to Korea aboard the USS Windham Bay for combat trials in December 1952.

All the F-86F-2 fighters were assigned to the 335th FIS of 4th Fighter Wing at Kimpo, and only six aircraft were ever actually in Korea at any one time. When they arrived at Kimpo, these F-86F-2 fighters were re-painted as other original F-86F Sabre fighter such as the black and yellow FEAF ID bands and yellow and black tail stripe. Ground crews also painted the third gun port on the nose under the two 20 mm muzzle to make them looks indistinguishable with the original machine gun-armed F-86F Sabre fighter. Apart from that, the commander of F-86F-2 team was changed to Colonel Garrison, but Peterson was still stayed there as a contractor technician with other three contractor technicians and five assigned pilots.

The combat trial began in January 1953, though it was discovered that the cannon gas from the 20 mm cannon may cause a compressor stall which was very dangerous for both plane and its pilot, including one accident when Major Moorehead fired his 20 mm cannon in a long burst during one mission and caused the engine stop working, though he was able to restart the engine, the problem appeared again later. But even with the Sabre pilots only using two cannons at a time to avoid the problem, they still fired almost 10,900 rounds in combat, engaged MiG fighters in 41 missions and successfully shot down six of them (3 MiG fighters were probably destroyed and 13 MiG fighters damaged) with two F-86F-2 were damaged (one's intake was hit by the 37 mm shell and another one's wing was hit by the 23 mm shell), but unfortunately Captain Moore's plane suffered a flame-out accident followed by turbine failure on 30th April 1953, so he had to bail out in the end.

F-86H with M39 cannons, the successor of T-160 and the Gun Val project.

To solve these problems, Peterson not only sent the report to the test center, but also found a way to simply solve the problem: a simple horseshoe clip installed in the blast tube of the cannon broke up the cannon gas before it could enter the intake. The Gun Val combat trial program was finished on May 1953, and in order to completely solve the cannon gas problem, the engineers of North American Aviation company invented a C-shaped plate which could effectively dissipated the cannon gas, this solution was finally adopted for operational use on the late version of F-86H fighter with four M39 cannons.

Inspire by the success of the Gun Val program, USAF finally decided to accept the T-160 cannon as its next-generation air-combat weapon and renamed it as M39 20 mm cannon. The first operational fighter equip with M39 cannon was North American Aviation F-86H-5 Sabre fighter in mid 1950s, then it became the standard internal weapon on both North American Aviation F-100 Super Sabre fighter, McDonnell F-101A Voodoo long-range escort fighter and Northrop F-5 fighter.

Media

Excellent additions to the article would be video guides, screenshots from the game, and photos.

See also

Related development
  • Canadair Sabre (those Sabres manufactured with the designator "CL")
  • North American F-86A/F
  • North American F-86D Sabre
  • North American F-100 Super Sabre
  • North American FJ-4 Fury
Aircraft of comparable role, configuration and era

External links


North American Aviation
Fighters 
P-51A  P-51 · P-51A
P-51C  P-51C-10
P-51D  P-51D-5 · P-51D-10 · P-51D-20-NA · P-51D-30
P-51H  P-51H-5-NA
Twin-engine fighters  F-82E
Jet fighters  F-86A-5 · F-86F-2 · F-86F-25 · F-86F-35 · F-100D
Strike aircraft  A-36 · PBJ-1H · PBJ-1J
  FJ-4B · FJ-4B VMF-232
Bombers  B-25J-1 · B-25J-20
Export/Licence  ▂B-25J-30 · ␗B-25J-30
  ▄Mustang Mk IA · F-6C-10-NA · ␗P-51C-11-NT · ␗P-51D-20 · J26 David · J26 · P-51D-20-NA · ␗P-51K
  F-86F-30 ▅ · ␗F-86F-30 · F-86F-40 ▅ · F-86F-40 JASDF▅ · ␗F-86F-40
  ◄F-86K · ▄F-86K (Italy) · ▄F-86K (France)
  ␗F-100A · ▄F-100D · ␗F-100F
Captured  ▅P-51C-11-NT
  Canadair Limited license-built the F-86 as the CL-13 for use in Canada and export to Europe.
  Fiat license-built the F-86K for the Italian Air Force though another 120 NAA built F-86Ks were also sold to the Italians.
See Also  Mitsubishi Heavy Industries · Canadair Limited · Fiat Aviation

USA jet aircraft
  Fighters
F9F  F9F-2 · F9F-5 · F9F-8
F-80  F-80A-5 · F-80C-10
F-84  F-84B-26 · F-84F · F-84G-21-RE
F-86  F-86A-5 · F-86F-25 · F-86F-2 · F-86F-35
F-89  F-89B · F-89D
F-100  F-100D
F-104  F-104A · F-104C
F-4  F-4C Phantom II · F-4E Phantom II · F-4J Phantom II · F-4S Phantom II
F-5  F-5A · F-5C · F-5E · F-20A
F-8  F8U-2 · F-8E
F-14  F-14A Early · ▄F-14A IRIAF · F-14B
F-15  F-15A · F-15C MSIP II · F-15E
F-16  F-16A · F-16A ADF · F-16C
Other  P-59A · F2H-2 · F3D-1 · F3H-2 · F4D-1 · F11F-1
  Strike Aircraft
FJ-4  FJ-4B · FJ-4B VMF-232
A-4  A-4B · A-4E Early
A-7  A-7D · A-7E · A-7K
AV-8  AV-8A · AV-8C · AV-8B Plus · AV-8B (NA)
A-10  A-10A · A-10A Late · A-10C
F-111  F-111A · F-111F
Other  A-6E TRAM · F-105D · F-117
  Bombers
B-57  B-57A · B-57B