Difference between revisions of "F8U-2"

From War Thunder Wiki
Jump to: navigation, search
m (Flight performance: Added a description)
(Edits)
Line 14: Line 14:
  
 
The F8U-2 is a single engine supersonic carrier-based jet fighter, its powerplant is the Pratt & Whitney J57-P-16 engine that can produce 8,000 kgf of thrust. The Crusader is able to reach 1 Mach in level flight at sea level and 1.95 Mach at 10,600 m, that puts it on par with many jet fighters like the MiG-19 or the Su-7B, but it is also slower than any F-104 and MiG-21 at low altitude.
 
The F8U-2 is a single engine supersonic carrier-based jet fighter, its powerplant is the Pratt & Whitney J57-P-16 engine that can produce 8,000 kgf of thrust. The Crusader is able to reach 1 Mach in level flight at sea level and 1.95 Mach at 10,600 m, that puts it on par with many jet fighters like the MiG-19 or the Su-7B, but it is also slower than any F-104 and MiG-21 at low altitude.
The structural speed limit is very high, it's 1555 km/h IAS, reaching that speed even when the plane is diving is not that easy, so the player does not have to worry about overspeeding. Its thrust to weight ratio while not being close to 1.0 still is good enough to make the plane very good in any longer fight and makes the level acceleration very good.
+
The structural speed limit is very high: 1,555 km/h IAS, reaching that speed even when the plane is diving is not that easy, so the player does not have to worry about overspeeding. Its thrust to weight ratio while not being close to 1.0 still is good enough to make the plane very good in any longer fight and makes the level acceleration very good.
 
The F8U-2 is also decent at climbing, at sea level with full fuel tanks it can reach up to 130 m/s, however other jets like the MiG-19, MiG-21, or Su-7 are better at climbing. With the afterburner on and full fuel tanks it can fly for about 12 minutes at low altitude, flying at higher altitude (5,000 m) increases it to about 16 minutes.
 
The F8U-2 is also decent at climbing, at sea level with full fuel tanks it can reach up to 130 m/s, however other jets like the MiG-19, MiG-21, or Su-7 are better at climbing. With the afterburner on and full fuel tanks it can fly for about 12 minutes at low altitude, flying at higher altitude (5,000 m) increases it to about 16 minutes.
  
Compared to many other supersonic jet fighters, the Crusader is very good at dogfighting. Although it has quite low G limits (+10G with full fuel tanks) it is capable in both shorter and longer fights because of instantaneous turn rate which can be improved by using flaps with the speed limit that is 1070 km/h IAS and sustained turn rate, the plane is capable of performing a full horizontal circle at sea level in 22 seconds with 30 minutes of fuel.
+
Compared to many other supersonic jet fighters, the Crusader is very good at dogfighting. Although it has quite low G limits (+10G with full fuel tanks) it is capable in both shorter and longer fights because of instantaneous turn rate which can be improved by using flaps with the speed limit that is 1,070 km/h IAS and sustained turn rate, the plane is capable of performing a full horizontal circle at sea level in 22 seconds with 30 minutes of fuel.
 
The best sustained turn rate can be achieved by flying at ~650 km/h IAS where it reaches 16.2 deg/s, that makes it better at longer turning than many jet fighters, for example any MiG-21, Mirage, F-4 Phantom or F3H, however it will struggle below 300 km/h against anything because of high wing loading. Due to low G limits the plane is very easy to break in RB with the Mouse Aim controls, in SB it also the case, especially after switching to the damping stability augmentation system (SAS) mode, which overrides high speed locking of the elevator.
 
The best sustained turn rate can be achieved by flying at ~650 km/h IAS where it reaches 16.2 deg/s, that makes it better at longer turning than many jet fighters, for example any MiG-21, Mirage, F-4 Phantom or F3H, however it will struggle below 300 km/h against anything because of high wing loading. Due to low G limits the plane is very easy to break in RB with the Mouse Aim controls, in SB it also the case, especially after switching to the damping stability augmentation system (SAS) mode, which overrides high speed locking of the elevator.
 
The roll rate performance is above the average compared to other jet fighters, it is ~135 deg/s at 600 km/h IAS and increases further to ~210 deg/s at 1,000 km/h IAS. The airbrake in this plane is located under the fuselage, that means it is not possible to extend it and the landing gear at the same time.
 
The roll rate performance is above the average compared to other jet fighters, it is ~135 deg/s at 600 km/h IAS and increases further to ~210 deg/s at 1,000 km/h IAS. The airbrake in this plane is located under the fuselage, that means it is not possible to extend it and the landing gear at the same time.
The most interesting feature about this plane is its variable-incidence wing design which can be pivoted by 7° out of the fuselage during the takeoff or landing to make them easier, this functionality can be enabled by lowering flaps to the landing position and the minimum speed is 580 km/h IAS.
+
The most interesting feature about this plane is its variable-incidence wing design which can be pivoted by 7° out of the fuselage during the take-off or landing to make them easier, this functionality can be enabled by lowering flaps to the landing position and the minimum speed is 580 km/h IAS.
  
 
With full-real controls the F8U-2 has access to two SAS modes, manual and damping. With the manual mode it is quite challenging to fly, it is very easy to pull too much G or stall it out at lower speed. After switching to the damping mode it gets much more stable, but gets less responsive in roll axis, also makes the plane not lock up at any speed.
 
With full-real controls the F8U-2 has access to two SAS modes, manual and damping. With the manual mode it is quite challenging to fly, it is very easy to pull too much G or stall it out at lower speed. After switching to the damping mode it gets much more stable, but gets less responsive in roll axis, also makes the plane not lock up at any speed.

Revision as of 16:12, 10 May 2021

Rank VI USSR | Premium | Golden Eagles
Su-25K Pack
F8U-2
f8u-2.png
GarageImage F8U-2.jpg
F8U-2
Research:220 000 Specs-Card-Exp.png
Purchase:620 000 Specs-Card-Lion.png
Show in game

Description

The F8U-2 Crusader II is a rank VI American jet fighter with a battle rating of 9.7 (AB), 10.0 (RB), and 10.3 (SB). It was introduced in Update "Ixwa Strike".

General info

Flight performance

Arrestor gear
Accelerates braking by grabbing the brake cable on the deck of the aircraft carrier
Air brakes
Allows you to dramatically reduce the flight speed by releasing special flaps
Max speed
at 10 668 m2 038 km/h
Turn time28 s
Max altitude16 310 m
EnginePratt & Whitney J57-P-16
Type
Cooling systemAir
Take-off weight13 t

The F8U-2 is a single engine supersonic carrier-based jet fighter, its powerplant is the Pratt & Whitney J57-P-16 engine that can produce 8,000 kgf of thrust. The Crusader is able to reach 1 Mach in level flight at sea level and 1.95 Mach at 10,600 m, that puts it on par with many jet fighters like the MiG-19 or the Su-7B, but it is also slower than any F-104 and MiG-21 at low altitude. The structural speed limit is very high: 1,555 km/h IAS, reaching that speed even when the plane is diving is not that easy, so the player does not have to worry about overspeeding. Its thrust to weight ratio while not being close to 1.0 still is good enough to make the plane very good in any longer fight and makes the level acceleration very good. The F8U-2 is also decent at climbing, at sea level with full fuel tanks it can reach up to 130 m/s, however other jets like the MiG-19, MiG-21, or Su-7 are better at climbing. With the afterburner on and full fuel tanks it can fly for about 12 minutes at low altitude, flying at higher altitude (5,000 m) increases it to about 16 minutes.

Compared to many other supersonic jet fighters, the Crusader is very good at dogfighting. Although it has quite low G limits (+10G with full fuel tanks) it is capable in both shorter and longer fights because of instantaneous turn rate which can be improved by using flaps with the speed limit that is 1,070 km/h IAS and sustained turn rate, the plane is capable of performing a full horizontal circle at sea level in 22 seconds with 30 minutes of fuel. The best sustained turn rate can be achieved by flying at ~650 km/h IAS where it reaches 16.2 deg/s, that makes it better at longer turning than many jet fighters, for example any MiG-21, Mirage, F-4 Phantom or F3H, however it will struggle below 300 km/h against anything because of high wing loading. Due to low G limits the plane is very easy to break in RB with the Mouse Aim controls, in SB it also the case, especially after switching to the damping stability augmentation system (SAS) mode, which overrides high speed locking of the elevator. The roll rate performance is above the average compared to other jet fighters, it is ~135 deg/s at 600 km/h IAS and increases further to ~210 deg/s at 1,000 km/h IAS. The airbrake in this plane is located under the fuselage, that means it is not possible to extend it and the landing gear at the same time. The most interesting feature about this plane is its variable-incidence wing design which can be pivoted by 7° out of the fuselage during the take-off or landing to make them easier, this functionality can be enabled by lowering flaps to the landing position and the minimum speed is 580 km/h IAS.

With full-real controls the F8U-2 has access to two SAS modes, manual and damping. With the manual mode it is quite challenging to fly, it is very easy to pull too much G or stall it out at lower speed. After switching to the damping mode it gets much more stable, but gets less responsive in roll axis, also makes the plane not lock up at any speed.

Characteristics Max Speed
(km/h at 10,668 m)
Max altitude
(metres)
Turn time
(seconds)
Rate of climb
(metres/second)
Take-off run
(metres)
AB RB AB RB AB RB
Stock 2,025 2,017 16310 28.4 29.4 113.8 104.6 1,828
Upgraded 2,054 2,038 27.6 28.0 162.5 137.0

Details

Features
Combat flaps Take-off flaps Landing flaps Air brakes Arrestor gear Drogue chute
X X
Limits
Wings (km/h) Gear (km/h) Flaps (km/h) Max Static G
Combat Take-off Landing + -
1555 428 1070 N/A 583 ~10 ~6
Optimal velocities (km/h)
Ailerons Rudder Elevators Radiator
< 1000 < 590 < 500 N/A

Engine performance

Engine Aircraft mass
Engine name Number Basic mass Wing loading (full fuel)
Pratt & Whitney J57-P-16 1 8,339 kg 341 kg/m2
Engine characteristics Mass with fuel (no weapons load) Max Takeoff
Weight
Weight (each) Type 14m fuel 20m fuel 30m fuel 45m fuel 48m fuel
1,592 kg Afterburning axial-flow turbojet 9,531 kg 9,916 kg 10,708 kg 11,925 kg 12,279 kg 12,760 kg
Maximum engine thrust @ 0 m (RB / SB) Thrust to weight ratio @ 0 m (WEP)
Condition 100% WEP 14m fuel 20m fuel 30m fuel 45m fuel 49m fuel MTOW
Stationary 4,562 kgf 8,003 kgf 0.84 0.81 0.75 0.67 0.65 0.63
Optimal 4,804 kgf
(1,000 km/h)
8,921 kgf
(1,200 km/h)
0.94 0.90 0.83 0.75 0.73 0.70

Survivability and armour

Flares/Chaff
Aircraft countermeasures to distract IR and radar-guided missiles and also AA radar
Crew1 person
Speed of destruction
Structural0 km/h
Gear428 km/h

Examine the survivability of the aircraft. Note how vulnerable the structure is and how secure the pilot is, whether the fuel tanks are armoured, etc. Describe the armour, if there is any, and also mention the vulnerability of other critical aircraft systems.

Modifications and economy

Repair costBasic → Reference
AB2 801 → 4 260 Sl icon.png
RB9 725 → 14 791 Sl icon.png
SB8 069 → 12 272 Sl icon.png
Total cost of modifications195 000 Rp icon.png
307 000 Sl icon.png
Talisman cost2 700 Ge icon.png
Crew training175 000 Sl icon.png
Experts620 000 Sl icon.png
Aces2 600 Ge icon.png
Research Aces1 010 000 Rp icon.png
Reward for battleAB / RB / SB
130 / 370 / 600 % Sl icon.png
226 / 226 / 226 % Rp icon.png
Modifications
Flight performance Survivability Weaponry
Mods jet compressor.png
Compressor
Research:
7 800 Rp icon.png
Cost:
12 000 Sl icon.png
260 Ge icon.png
Mods booster.png
New boosters
Research:
15 000 Rp icon.png
Cost:
24 000 Sl icon.png
490 Ge icon.png
Mods aerodinamic wing.png
Wings repair
Research:
12 000 Rp icon.png
Cost:
19 000 Sl icon.png
390 Ge icon.png
Mods jet engine.png
Engine
Research:
21 000 Rp icon.png
Cost:
33 000 Sl icon.png
690 Ge icon.png
Mods aerodinamic fuse.png
Fuselage repair
Research:
7 800 Rp icon.png
Cost:
12 000 Sl icon.png
260 Ge icon.png
Mods armor frame.png
Airframe
Research:
15 000 Rp icon.png
Cost:
24 000 Sl icon.png
490 Ge icon.png
Mods g suit.png
G-suit
Research:
12 000 Rp icon.png
Cost:
19 000 Sl icon.png
390 Ge icon.png
Mods armor cover.png
Cover
Research:
21 000 Rp icon.png
Cost:
33 000 Sl icon.png
690 Ge icon.png
Mods ammo.png
mk_12_mod3_belt_pack
Research:
7 800 Rp icon.png
Cost:
12 000 Sl icon.png
260 Ge icon.png
Mod arrow 1.png
Mods heli false thermal targets.png
Flares/Chaff
Research:
7 800 Rp icon.png
Cost:
12 000 Sl icon.png
260 Ge icon.png
Mods air to air missile.png
AIM-9B
Research:
7 800 Rp icon.png
Cost:
12 000 Sl icon.png
260 Ge icon.png
Mod arrow 1.png
Mods pilon block rocket.png
FFAR Mighty Mouse
Research:
15 000 Rp icon.png
Cost:
24 000 Sl icon.png
490 Ge icon.png
Mod arrow 1.png
Mods weapon.png
mk_12_mod3_new_gun
Research:
12 000 Rp icon.png
Cost:
19 000 Sl icon.png
390 Ge icon.png
Mods air to air missile.png
AIM-9D
Research:
12 000 Rp icon.png
Cost:
19 000 Sl icon.png
390 Ge icon.png
Mods pilon block rocket large.png
LAU-35A
Research:
21 000 Rp icon.png
Cost:
33 000 Sl icon.png
690 Ge icon.png

Armaments

Offensive armament

The F8U-2 is armed with:

  • A choice between two presets:
    • 4 x 20 mm Browning-Colt Mk12 Mod 3 cannons, nose-mounted (144 rpg = 576 total)
    • 4 x 20 mm Browning-Colt Mk12 Mod 3 cannons, nose-mounted (144 rpg = 576 total) + 32 x FFAR Mighty Mouse rockets

Suspended armament

The F8U-2 can be outfitted with the following ordnance:

  • Without load
  • 2 x AIM-9B Sidewinder missiles
  • 4 x AIM-9B Sidewinder missiles
  • 2 x AIM-9D Sidewinder missiles
  • 4 x AIM-9D Sidewinder missiles
  • 4 x Zuni Mk32 Mod 0 ATAP rockets
  • 8 x Zuni Mk32 Mod 0 ATAP rockets
  • 2 x AIM-9B Sidewinder missiles + 4 x Zuni Mk32 Mod 0 ATAP rockets
  • 2 x AIM-9D Sidewinder missiles + 4 x Zuni Mk32 Mod 0 ATAP rockets

Usage in battles

The F8U-2 performs the best when using tactics similar to the Hunter, which involves using your high-speed pointing and handling to break the enemy formation. However, be sure not to engage in a close combat when your speed is 900 km/h or above, since there is a great risk that your wing would break due to the overload.

The most dangerous enemies include:

  • Any soviet aircraft that has an R-60: since it would be impossible to dodge the missile at high speed.
  • MiG-17s: they can outmanoeuvre you in dogfights.

Radars

The F8U-2 is equipped with an AN/APQ-50 search and tracking radar. The radar is mounted in the nose of the aircraft.

AN/APQ-50 - Target Detection Radar
Maximum
Detection
Range
Guaranteed
Detection
Range
Max Azimuth
Scan Angle
Max Elevation
Scan Angle
370,000 m
(theoretical)
40,000 m ±50.0° -8.15°/+4.15°
AN/APQ-50 - Target Tracking Radar
Maximum
Tracking
Range
Minimum
Tracking
Range
Azimuth Tracking
Angle
Elevation Tracking
Angle
92,500 m 200 m ±58.0° ±58.0°

Pros and cons

Pros:

  • Cannons could fire separately to save ammo
  • Cannons can deal serious damage, with 4 guns even a short burst is enough to destroy an enemy aircraft.
  • Four AIM-9Ds, good when engaging enemies at about 3 km
  • Excellent flight performance
  • Superb acceleration, even compared to top tier jets
  • Excellent pointing at high speed
  • Landing flaps provide a lot of lift thanks to the variable wing design
  • Extendable rocket pod which fires 16 Mighty Mouses at once
  • Good radar

Cons:

  • Fragile wings, can easily rip at high speeds and hard turns.
  • Cannot break the sound barrier at low altitude
  • Very likely to set on fire because of the fuel tank placement
  • Lacks RWR

History

The F8U-2 Crusader was a version of the F8U Crusader that was improved from the F8U-1 in a few ways, resulting from the advent of a new P&W engine.

The largest improvement was in the addition of the Pratt and Whitney J57-P-16 engine that was rated to produce 16,900 lbf of thrust. The new engine resulted in a higher maximum speed of up to 960 knots (1777.92 kilometers per hour). Two air scoops were added to the tail cone in order to cool the more powerful (and hotter!) engine. In addition to the new engine, ventral stabilizer fins were added to the rear of the fuselage to correct stability issues. The wingspan was also reduced to 35 feet 2 inches after three inches were removed from each wingtip. A Martin-Baker F-5 ejection seat was added to the aircraft. Finally, capability to use a Y-pylon was added to carry two AIM-9 Sidewinders on each fuselage station for a total of four AIM-9 Sidewinders on the fuselage, two more than on the F8U-1.

The F8U-2 prototype was modified from the F8U-1 number four (BuNo 140477) and first flew on 20 August 1957. The F8U-2 was ordered into production and the first production F8U-2 (BuNo 145546) flew for the first time on 29 August 1958. The F8U-2 entered service in February 1959 and was redesignated as the F-8C Crusader in 1962.[1][2]

Devblog

In 1952, the American Naval command announced requirements for a new supersonic jet carrier-based fighter to protect carrier groups from enemy aircraft and achieve air superiority. Chance Vought Aircraft Inc., which already had considerable experience working with carrier-based aircraft, became one of the participants in the competition. Their candidate differed from the competition by a variable-incidence wing. The wing tilted upward by 5 degrees, which noticeably improved taking off and landings on short decks of aircraft carriers.

Just 20 months after receiving the contract, the first prototype was built for tests. The fighter successfully passed the initial tests, in the very first flight it easily broke the sound barrier, and in a modified form went to the navy for deck tests. The first prototype series was successfully tested on aircraft carriers in the spring of 1956, after which the F8U-1 Crusader entered service with the US Navy. Work on a promising jet fighter did not stop after the start of mass production. The modified aircraft with a new power plant, advanced navigation system, radar, FCS and improved armament received the designation F8U-2.

The Crusader has become a real legend and a symbol of US carrier-based aviation for its excellent flight characteristics, ease of operation, reliability and significant firepower. The fighter received the baptism of fire almost immediately after entering the service, and since then has been actively used in combat and training missions in many parts of the world, including intensive combat service in Vietnam. Even when more advanced aircraft entered service, the naval pilots were reluctant to say goodbye to the Crusaders. "When you're out of F-8's, you're out of fighters" they said.

Media

Skins
Images

See also

Links to the articles on the War Thunder Wiki that you think will be useful for the reader, for example:

  • reference to the series of the aircraft;
  • links to approximate analogues of other nations and research trees.

External links

References


Chance Vought Aircraft
Fighters 
Corsair  F4U-1A · F4U-1A (USMC) · F4U-1C · F4U-1D · F4U-4 · F4U-4B · F4U-4B VMF-214
Float planes  OS2U-1 · OS2U-3
Attackers  AU-1
Bombers  SB2U-2 · SB2U-3
Jet aircraft 
Corsair II  A-7D · A-7E · A-7K
Crusader  F8U-2 · F-8E
Export  V-156-B1 · V-156-F · ▄Corsair F Mk II · F4U-7 · ▄F-8E(FN)
Captured  ▅F4U-1A

USA jet aircraft
  Fighters
F-4  F-4C Phantom II · F-4E Phantom II · F-4J Phantom II · F-4S Phantom II
F-5  F-5A · F-5C · F-5E · F-20A
F-8  F8U-2 · F-8E
F-80  F-80A-5 · F-80C-10
F-84  F-84B-26 · F-84F · F-84G-21-RE
F-86  F-86A-5 · F-86F-25 · F-86F-2 · F-86F-35
F-89  F-89B · F-89D
F-100  F-100D
F-104  F-104A · F-104C
F-14  F-14A Early · F-14B
F-15  F-15A
F-16  F-16A · F-16A ADF · F-16C
F9F  F9F-2 · F9F-5 · F9F-8
Other  P-59A · F2H-2 · F3D-1 · F3H-2 · F4D-1 · F11F-1
  Strike Aircraft
FJ-4  FJ-4B · FJ-4B VMF-232
A-4  A-4B · A-4E Early
A-6  A-6E TRAM
A-7  A-7D · A-7E · A-7K
AV-8  AV-8A · AV-8C
A-10  A-10A · A-10A Late
B-57  B-57A · B-57B
F-105  F-105D
F-111  F-111A